Skip to main content
Log in

Halogen-free and phosphorus-free flame-retarded polycarbonate using cyclic polyphenylsilsesquioxanes

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid macrocyclic compounds, polyphenylsilsesquioxanes (cyc-PPSQ), have been synthesized through hydrolysis and condensation reactions of phenyl trichlorosilane. PC/cyc-PPSQ flame retardant materials were obtained by melt blending cyc-PPSQ and PC using a twin-screw extruder. The combustion and thermal decomposition behavior of PC/cyc-PPSQ composites were studied using UL-94, LOI, CONE, TG–FTIR and Py–GC/MS, which showed that the presence of cyc-PPSQ could improve flame retardancy and reduce the heat release and smoke release during combustion of PC. Incorporation of 2 wt% cyc-PPSQ produced a PC/cyc-PPSQ-2 composite which displayed LOI 37.5% and UL-94 V-0 (1.6 mm). The presence of cyc-PPSQ not only improved the flame retardancy of PC, but also did not diminish the glass transition temperature, good mechanical properties and transparency of PC. These results combined with those from TG–FTIR analysis suggest that cyc-PPSQ can promote the initial thermal induced chain-breaking reaction of PC, promote the cross-linking and charring of PC, and facilitate the formation of a dense carbon layer and external SiO2 inorganic barrier layer during combustion. Results from Py–GC/MS indicate that the presence of cyc-PPSQ promotes the generation of phenolic compounds when the composites are pyrolyzed at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li + -conducting solid polymer electrolytes. Prog Polym Sci 81:114–143

    Article  CAS  Google Scholar 

  2. Wang Y, Wang B, Wang J, Ren Y, Xuan C, Liu C, Shen C (2018) Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. J Hazard Mater 344:849–856

    Article  CAS  Google Scholar 

  3. Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an enabling science for sustainable polymers. Chem Rev 118:839–885

    Article  CAS  Google Scholar 

  4. Kausar A (2018) A review of filled and pristine polycarbonate blends and their applications. J Plast Film Sheeting 34:60–97

    Article  CAS  Google Scholar 

  5. Chow W, Leung C, Zou G, Dong H, Gao Y (2008) Flame spread over plastic materials in flashover room fires. Constr Build Mater 22:629–634

    Article  Google Scholar 

  6. Daniel Y, Howell B (2018) Phosphorus flame retardants from isosorbide bis-acrylate. Polym Degrad Stab 156:14–21

    Article  CAS  Google Scholar 

  7. Wawrzyn E, Schartel B, Karrasch A, Jäger C (2014) Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis (diphenyl phosphate): adding inorganic additives. Polym Degrad Stab 106:74–87

    Article  CAS  Google Scholar 

  8. Liu C, Yao Q (2017) Design and synthesis of efficient phosphorus flame retardant for polycarbonate. Ind Eng Chem Res 56:8789–8796

    Article  CAS  Google Scholar 

  9. Yang Y, Liu J, Cai X (2016) Antagonistic flame retardancy between hexakis (4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system. J Therm Anal Calorim 126:571–583

    Article  CAS  Google Scholar 

  10. Yang S, Lv G, Liu Y, Wang Q (2013) Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polym Degrad Stab 98:2795–2800

    Article  CAS  Google Scholar 

  11. Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, Jäger C (2012) What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis (diphenyl phosphate) during pyrolysis and fire behavior? Ind Eng Chem Res 51:1244–1255

    Article  CAS  Google Scholar 

  12. Qiu Y, Liu Z, Qian L, Hao J (2017) Gaseous-phase flame retardant behavior of a multi-phosphaphenanthrene compound in a polycarbonate composite. RSC Adv 7:51290–51297

    Article  CAS  Google Scholar 

  13. Zhang W, He X, Song T, Jiao Q, Yang R (2014) The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab 109:209–217

    Article  CAS  Google Scholar 

  14. Annakutty KS, Kishore K (1991) Pyrolysis gas chromatographic studies on polyphosphate esters of bisphenol A. Die Makromolekulare Chemie: Macromol Chem Phys 192:11–20

    Article  CAS  Google Scholar 

  15. Despinasse M-C, Schartel B (2012) Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile–butadiene–styrene. Polym Degrad Stab 97:2571–2580

    Article  CAS  Google Scholar 

  16. Guo J, Wang Y, Feng L, Zhong X, Yang C, Liu S, Cui Y (2013) Performance of a novel sulfonate flame retardant based on adamantane for polycarbonate. Polym Korea 37:437–441

    Article  CAS  Google Scholar 

  17. Zhu DY, Guo JW, Xian JX, Fu SQ (2017) Novel sulfonate-containing halogen-free flame-retardants: effect of ternary and quaternary sulfonates centered on adamantane on the properties of polycarbonate composites. RSC Adv 7:39270–39278

    Article  CAS  Google Scholar 

  18. Zhang Q, Zhang W, Huang J, Lai Y, Xing T, Chen G, Jin W, Liu H, Sun B (2015) Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Mater Des 85:796–799

    Article  CAS  Google Scholar 

  19. Zhou W, Yang H (2007) Flame retarding mechanism of polycarbonate containing methylphenyl-silicone. Thermochim Acta 452:43–48

    Article  CAS  Google Scholar 

  20. Wang J, Xin Z (2010) Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system. J Appl Polym Sci 115:330–337

    Article  CAS  Google Scholar 

  21. Huang J-C, He C-B, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    Article  CAS  Google Scholar 

  22. Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes1. J Am Chem Soc 68:356–358

    Article  CAS  Google Scholar 

  23. Abe Y, Gunji T (2004) Oligo-and polysiloxanes. Prog Polym Sci 29:149–182

    Article  CAS  Google Scholar 

  24. Handke M, Handke B, Kowalewska A, Jastrzębski W (2009) New polysilsesquioxane materials of ladder-like structure. J Mol Struct 924:254–263

    Article  Google Scholar 

  25. Chang S, Matsumoto T, Matsumoto H, Unno M (2010) Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane. Appl Organomet Chem 24:241–246

    Article  CAS  Google Scholar 

  26. Zhang W, Wang X, Wu Y, Qi Z, Yang R (2018) Preparation and characterization of organic-inorganic hybrid macrocyclic compounds: cyclic ladder-like polyphenylsilsesquioxanes. Inorg Chem 57:3883–3892

    Article  CAS  Google Scholar 

  27. Gago-Calderón A, Hermoso-Orzáez MJ, Andres-Diaz D, Ramon J, Redrado-Salvatierra G (2018) Evaluation of uniformity and glare improvement with low energy efficiency losses in street lighting LED luminaires using laser-sintered polyamide-based diffuse covers. Energies 11:816

    Article  Google Scholar 

  28. Sánchez-Soto M, Schiraldi DA, Illescas S (2009) Study of the morphology and properties of melt-mixed polycarbonate–POSS nanocomposites. Eur Polym J 45:341–352

    Article  Google Scholar 

  29. Danilaev M, Bogoslov E, Kuklin V, Klabukov M, Khamidullin O, Pol’sky YE, Mikhailov S (2019) Structure and mechanical properties of a dispersedly filled transparent polycarbonate. Mech Compos Mater 55:53–62

    Article  CAS  Google Scholar 

  30. Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998

    Article  CAS  Google Scholar 

  31. Cheng B, Li X, Hao J, Yang R (2016) The effect of pyrolysis gaseous and condensed char of PC/PPSQ composite on combustion behavior. Polym Degrad Stab 129:47–55

    Article  CAS  Google Scholar 

  32. Jang BN, Wilkie CA (2004) A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab 86:419–430

    Article  CAS  Google Scholar 

  33. Li X-H, Meng Y-Z, Zhu Q, Tjong S (2003) Thermal decomposition characteristics of poly (propylene carbonate) using TG/IR and Py–GC/MS techniques. Polym Degrad Stab 81:157–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Project was funded by the National Natural Science Foundation of China (21975022) the National Program on Key Research Project (2016YFB0302101), and the International Science and Technology Cooperation Program of China (S2014ZR0465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Zhang.

Ethics declarations

Conflict of interest

To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Qin, Z., Zhang, W. et al. Halogen-free and phosphorus-free flame-retarded polycarbonate using cyclic polyphenylsilsesquioxanes. J Mater Sci 55, 10953–10967 (2020). https://doi.org/10.1007/s10853-020-04763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04763-8

Navigation