Skip to main content
Log in

Glowing photoluminescene in carbon-based nanodots: current state and future perspectives

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In these days, conservation of the environment is the vital theme of the globe. For that green materials are being discovered to a greater extent. By dint of exclusive properties like optical and electronic properties, water solubility, exceptional biocompatibility, low toxicity and influential chemical inertness of carbon nanodots (CDs) have been extensively investigated systematically and applied in many fields. One can increase the applicability of photostable and biocompatible CDs by doping of nitrogen, sulfur and/or other organic or inorganic materials. In particular, CDs are at present intensifying as a class of potential fluorescent explore in account of their low photobleaching and versatile surfaces. In this review article, we discuss a range of “green” sources along with diverse synthetic routes and photo- and electron properties of this unique material and also provide further insight for improvement in their functionality using various dopants and arouse further research into their potential applications, such as photovoltaics, bioimaging, nanodots-sensitized solar cells, energy conversion, optoelectronics, supercapacitor and light-emitting devices. For each topic, the most relevant end results reported in the literature are accessed with some considerations on the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siffror EI (2016) Energimyndigheten Sweden (See Renewable energy 12.3, Total energy 12.1).

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  3. Shi KY, Zhitomirsky I (2013) Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl Mater Interfaces 5:13161–13170

    Article  CAS  Google Scholar 

  4. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  5. Han K, Miao P, Tong H, Liu T, Cheng WB, Zhu X, Tang Y (2014) Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol. Appl Phys Lett 104:053101

    Article  CAS  Google Scholar 

  6. Vithalani R, Patel D, Modi CK, Som NN, Jha PK (2020) Graphene oxide supported oxovanadium (IV) complex for catalytic peroxidative epoxidation of styrene: an eye-catching impact of solvent. Appl Organomet Chem 34(4):e5500

    Article  CAS  Google Scholar 

  7. Patel D, Vithalani R, Modi CK (2020) Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds. New J Chem 44:2868–2881

    Article  CAS  Google Scholar 

  8. Mistry B, Machhi HK, Vithalani R, Patel D, Modi CK, Prajapati M, Surati KR, Soni SS, Jha PK, Kane SR (2019) Harnessing the N-dopant ratio to carbon quantum dots for enhancing the power conversion efficiency of solar cell. Sustain Energy Fuels 3:3182–3190

    Article  CAS  Google Scholar 

  9. Modi CK, Vithalani R, Patel D (2018) An immense uprising: functionalization and fine-tuning of 2D graphene designed for heterogeneous catalysis to make things greener. In: Mishra AK, Pathania D (eds) Graphene oxide: advances in research and applications. Nova Science Publishers, USA, pp 217–244

    Google Scholar 

  10. Ros TD, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 8:663–669

    Article  Google Scholar 

  11. Savin AV, Kivshar YS (2012) Transport of fullerene molecules along graphene nanoribbons. Sci Rep 2:1012

    Article  CAS  Google Scholar 

  12. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642

    Article  CAS  Google Scholar 

  13. Aramesh M, Fox K, Lau DWM, Fang JH, Ostrikov K, Prawer S, Cervenka J (2014) Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon 75:452–464

    Article  CAS  Google Scholar 

  14. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  15. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  16. Esteves da Silva JCG, Goncalves HMR (2011) Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem 30:1327–1336

    Article  CAS  Google Scholar 

  17. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    Article  CAS  Google Scholar 

  18. Arcudi F, Dorđevicc L, Prato M (2019) Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc Chem Res 52(8):2070–2079

    Article  CAS  Google Scholar 

  19. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258

    Article  CAS  Google Scholar 

  20. Cayuela A, Soriano ML, Carrillo-Carrión C, Valcarcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52:1311–1326

    Article  CAS  Google Scholar 

  21. Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9:634

    Article  CAS  Google Scholar 

  22. Hsu PC, Shih ZY, Lee CH, Chang HT (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917–920

    Article  CAS  Google Scholar 

  23. Lin LP, Rong MC, Luo F, Chen DM, Wang YR, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trac-Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  24. Hutton GAM, Martindale BCM, Reisner E (2017) Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev 46(20):6111–6123

    Article  CAS  Google Scholar 

  25. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358

    Article  CAS  Google Scholar 

  26. Wang D, Chen J-F, Dai L (2015) Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Char 5:515–523

    Article  CAS  Google Scholar 

  27. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-Luminescent graphene quantum dots. Adv Mater 6:734–738

    Article  CAS  Google Scholar 

  28. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939

    Article  CAS  Google Scholar 

  29. Zhao Y, Hu CG, Hu Y, Cheng HH, Shi GQ, Qu LT (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375

    Article  CAS  Google Scholar 

  30. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    Article  CAS  Google Scholar 

  31. Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel E, Hwang C, Ruan G, Ceriotti G, Raji AR, Martí AA, Tour JM (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943–2948

    Article  CAS  Google Scholar 

  32. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  33. Sciortino A, Marino E, Dam B, Schall P, Cannas M, Messina F (2016) Solvatochromism unravels the emission mechanism of carbon nanodots. J Phys Chem Lett 7:3419–3423

    Article  CAS  Google Scholar 

  34. Demchenko AP, Dekaliuk MO (2016) The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies. Nanoscale 8:14057–14069

    Article  CAS  Google Scholar 

  35. Khan S, Gupta A, Verma NC, Nandi CK (2015) Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett 15(12):8300–8305

    Article  CAS  Google Scholar 

  36. Zhu S, Meng Q, Wang L, Zhang J, Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  CAS  Google Scholar 

  37. Nicollian EH (2000) Surface Passivation of Semiconductors. J Vac Sci Technol 8(5):S39

    Article  Google Scholar 

  38. Xu Y, Wu M, Liu FXZ, Yin XB, He XW, Zhang YK (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J 19:2276–2283

    Article  CAS  Google Scholar 

  39. Prasad KS, Pallela R, Kim D-M, Shim Y-B (2013) Microwave-assisted one-pot synthesis of metal-free nitrogen and phosphorus dual-doped nanocarbon for electrocatalysis and cell imaging. Part Part Syst Char 30(6):557–564

    Article  CAS  Google Scholar 

  40. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  41. Messin F, Sciortino L, Popescu R, Venezia AM, Sciortino A, Buscarino G, Agnello S, Schneider R, Gerthsen D, Cannasa M, Gelardia FM (2016) Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4 nanocrystalline structure. J Mater Chem C 4:2598–2605

    Article  CAS  Google Scholar 

  42. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    Article  CAS  Google Scholar 

  43. Oza G, Oza K, Pandey S, Shinde S, Mewada A, Thakur M, Sharon M, Sharon M (2015) A green route towards highly photoluminescent and cytocompatible carbon dot synthesis and its separation using sucrose density gradient centrifugation. J Fluoresc 25(1):9–14

    Article  CAS  Google Scholar 

  44. Jia X, Li J, Wang E (2012) One-pot green synthesis of optically pH sensitive carbon dots with upconversion luminescence. Nanoscale 4(18):5572–5575

    Article  CAS  Google Scholar 

  45. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu J, Lian S, Tsang CH, Yang X, Lee ST (2010) Water soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    Article  CAS  Google Scholar 

  46. Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  47. Liu S, Tian J, Wang L, Luo Y, Sun X (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv 2(2):411–413

    Article  CAS  Google Scholar 

  48. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed 51:9297–9301

    Article  CAS  Google Scholar 

  49. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electro catalysts for oxygen reduction. Chem Commun 48(75):9367–9369

    Article  CAS  Google Scholar 

  50. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24(15):2037–2041

    Article  CAS  Google Scholar 

  51. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  52. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3(22):8286–8290

    Article  CAS  Google Scholar 

  53. Fng X, Wu J, Ai M, Pisula W, Zhi L, Rabe JP, Muljen K (2007) Triangle-shaped polycyclic aromatic hydrocarbons. Angew Chem Int Ed 46:3033–3036

    Article  CAS  Google Scholar 

  54. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375

    Article  CAS  Google Scholar 

  55. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118

    Article  CAS  Google Scholar 

  56. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B, Peng DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  CAS  Google Scholar 

  57. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Article  CAS  Google Scholar 

  58. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    Article  CAS  Google Scholar 

  59. Lee J, Kim K, Park WI, Kim BH, Park JH, Kim TH, Bong S, Kim CH, Chae G, Jun M, Hwang Y, Jung YS, Jeon S (2012) Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett 12:6078–6083

    Article  CAS  Google Scholar 

  60. Lin L, Zhang S (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48:10177–10179

    Article  CAS  Google Scholar 

  61. Makimura T, Kunii Y, Murakami K (1996) Light emission from nanometer-sized silicon particles fabricated by the laser ablation method. J Appl Phys 35:4780–4784

    Article  CAS  Google Scholar 

  62. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488

    Article  CAS  Google Scholar 

  63. Suda Y, Ono T, Akazawa M, Sakai Y, Sujino JT, Homma N (2002) Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method-size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films 415:15–20

    Article  CAS  Google Scholar 

  64. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47(3):932–934

    Article  Google Scholar 

  65. Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528

    Article  CAS  Google Scholar 

  66. Mazzier D, Favaro M, Agnoli S, Silvestrini S, Granozzi G, Maggini M, Moretto A (2014) Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties. Chem Commun 50(50):6592–6595

    Article  CAS  Google Scholar 

  67. Wang J, Cheng C, Huang Y, Zheng B, Yuan H, Bo L, Zheng M-W, Yang S-Y, Guo Y, Xiao D (2014) A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. J Mater Chem C 2(25):5028–5035

    Article  CAS  Google Scholar 

  68. Essner JB, Kist JA, Polo-Parada L, Baker GA (2018) Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem Mater 30(6):1878–1887

    Article  CAS  Google Scholar 

  69. Dordevic L, Arcudi F, Prato M (2019) Preparation, functionalization and characterization of engineered carbon nanodots. Nat Protoc 14:2931–2953

    Article  CAS  Google Scholar 

  70. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Black P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610–613

    Article  CAS  Google Scholar 

  71. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybersten MS, Steigerwald ML, Brus LS, Flynn GW (2008) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8(7):1965–1970

    Article  CAS  Google Scholar 

  72. Gokus T, Nair RR, Bonetti A, Bohmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12):3963–3968

    Article  CAS  Google Scholar 

  73. Yang ZC, Wang M, Yong AM, Wong SY, Zhange XH, Tan H, Chang AY, Li A, Wang J (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47(42):11615–11617

    Article  CAS  Google Scholar 

  74. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  CAS  Google Scholar 

  75. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458

    Article  CAS  Google Scholar 

  76. Zong J, Zhu Y, Yang X, Shen J, Li C (2011) Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun 47:764–766

    Article  CAS  Google Scholar 

  77. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    Article  CAS  Google Scholar 

  78. Rigodanza F, Dordevic L, Arcudi F, Prato M (2018) Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew Chem Int Ed 57(18):5062–5067

    Article  CAS  Google Scholar 

  79. Behera RK, Sau A, Mishra L, Bera K, Mallik S, Nayak A, Basu A, Sarangi MK (2019) Redox modifications of carbon dots shape their optoelectronics. J Phys Chem C 123(45):27937–27944

    Article  CAS  Google Scholar 

  80. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955–7957

    Article  CAS  Google Scholar 

  81. Mingos DMP, Baghurst DR (1991) Tilden lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47

    Article  CAS  Google Scholar 

  82. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  83. Wang Q, Liu X, Zhang LC, Lv Y (2012) Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. RSC Analyst 137:5392–5397

    Article  CAS  Google Scholar 

  84. Jaiswal A, Ghsoh SS, Chattopadhyay A (2012) Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal. Langmuir 28(44):5687–15696

    Article  CAS  Google Scholar 

  85. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382

    Article  CAS  Google Scholar 

  86. De B, Gupta K, Mandal M, Karak N (2013) Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng 2(3):445–453

    Article  CAS  Google Scholar 

  87. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473

    Article  CAS  Google Scholar 

  88. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20(8):2254–2263

    Article  CAS  Google Scholar 

  89. Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36:97–101

    Article  CAS  Google Scholar 

  90. Shen JH, Zhu YH, Chen C, Yang XL, Li CZ (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582

    Article  CAS  Google Scholar 

  91. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338

    Article  CAS  Google Scholar 

  92. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:239–245

    Article  CAS  Google Scholar 

  93. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Commun 9:2249

    Article  CAS  Google Scholar 

  94. Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Wang C, Shu C (2013) Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma property. Nanoscale 5:1137–1142

    Article  CAS  Google Scholar 

  95. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 12:4732–4740

    Article  CAS  Google Scholar 

  96. Luo PH, Ji Z, Li C, Shi G (2013) Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale 5:7361–7367

    Article  CAS  Google Scholar 

  97. Cadranel A, Margraf JT, Strauss V, Clark T, Guldi DM (2019) Carbon nanodots for charge-transfer processes. Acc Chem Res 52:955–963

    Article  CAS  Google Scholar 

  98. Martindale BCM, Hutton GAM, Caputo CA, Prantl S, Godin R, Durrant JR, Reisner E (2017) Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping. Angew Chem Int Ed 56(23):6459–6463

    Article  CAS  Google Scholar 

  99. Arcudi F, Strauss V, Dordevic L, Cadranel A, Guldi DM, Prato M (2017) Porphyrin antennas on carbon nanodots: excited state energy and electron transduction. Angew Chem Int Ed 56(40):12097–12101

    Article  CAS  Google Scholar 

  100. Cadranel A, Strauss V, Margraf JT, Winterfeld KA, Vogl C, Dorđevic L, Arcudi F, Hoelzel H, Jux N, Prato M, Guldi DM (2018) Screening supramolecular interactions between carbon nanodots and porphyrins. J Am Chem Soc 140(3):904–907

    Article  CAS  Google Scholar 

  101. Zoller P, Beth Th, Binosi D, Blatt R, Briegel H, Bruss D et al (2005) Quantum information processing and communication. Eur Phys J D 36:203–228

    Article  CAS  Google Scholar 

  102. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  CAS  Google Scholar 

  103. Jiang DE, Sumpter BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys 126:134701

    Article  CAS  Google Scholar 

  104. Deng DH, Pan XL, Yu LA, Cui Y, Jiang Y, Qi J, Li WX, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  105. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1:39–42

    Article  CAS  Google Scholar 

  106. Li M, Wu W, Ren W, Cheng HM, Tang N, Zhang W, Du Y (2012) Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl Phys Lett 101:103107

    Article  CAS  Google Scholar 

  107. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001–3005

    Article  CAS  Google Scholar 

  108. Feng Q, Cao Q, Li M, Liu F, Tang N, Du Y (2013) Synthesis and photoluminescence of fluorinated graphene quantum dots. Appl Phys Lett 102:013111

    Article  CAS  Google Scholar 

  109. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SX (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    Article  CAS  Google Scholar 

  110. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684

    Article  CAS  Google Scholar 

  111. Wang Y, Kalytchuk S, Zhang Y, Shi H, Kershaw SV, Rogach AL (2014) Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J Phys Chem Lett 5:1412–1420

    Article  CAS  Google Scholar 

  112. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  113. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860

    Article  CAS  Google Scholar 

  114. Li L, Ji J, Fei R, Wang C, Lu Q, Zhang J, Jiang L, Zhu J (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  CAS  Google Scholar 

  115. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461–7467

    Article  CAS  Google Scholar 

  116. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK (2013) Near infra-red photoluminescent graphenenanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079–5081

    Article  CAS  Google Scholar 

  117. Arcudi F, Dordevic L, Prato M (2017) Rationally designed carbon nanodots towards pure white-light emission. Angew Chem Inter Ed 56(15):4170–4173

    Article  CAS  Google Scholar 

  118. Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Wu H, Guo S (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592–6599

    Article  CAS  Google Scholar 

  119. Pan DY, Zhang JC, Li Z, Wu MH (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  CAS  Google Scholar 

  120. Yang F, Zhao M, Zheng B, Xiao D, Wu L, Guo Y (2012) Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem 22:25471–25479

    Article  CAS  Google Scholar 

  121. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jign X, Haddad RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294

    Article  CAS  Google Scholar 

  122. Zheng L, Chi Y, Dong YY, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  Google Scholar 

  123. Gan Z, Wu X, Zhou G, Shen J, Chu PK (2013) Is there real upconversion photoluminescence from graphene quantum dots? Adv Opt Mater 1:554–558

    Article  Google Scholar 

  124. Zhuo S, Shao M, Lee S (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6:1059–1064

    Article  CAS  Google Scholar 

  125. Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127

    Article  CAS  Google Scholar 

  126. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  127. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y (2012) Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24:5844–5848

    Article  CAS  Google Scholar 

  128. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee YK (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867

    Article  CAS  Google Scholar 

  129. Lee J, Yeom B, Bahng JH, Lee J, Violi A, Kotov NA (2016) Chiral graphene quantum dots. ACS Nano 10:1744

    Article  CAS  Google Scholar 

  130. Zhang Y, Hu L, Sun Y, Zhu C, Li R, Liu N, Huang Hu, Liu Y, Huang C, Kang Z (2016) One-step synthesis of chiral carbon quantum dots and their enantioselective recognition. RSC Adv 6(65):59956–59960

    Article  CAS  Google Scholar 

  131. Dordevic L, Arcudi F, D’Urso A, Cacioppo M, Micali N, Bürgi T, Purrello R, Prato M (2018) Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat Commun 9(1):3442

    Article  CAS  Google Scholar 

  132. Zhang M, Wang H, Wang B, Ma Y, Huang H, Liu Y, Shao M, Yao B, Kang Z (2019) Maltase decorated by chiral carbon dots with inhibited enzyme activity for glucose level control. Small 15:1901512

    Article  CAS  Google Scholar 

  133. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  134. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee CS, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    Article  CAS  Google Scholar 

  135. Liu RL, Wu DQ, Liu SH, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48:4598–4601

    Article  CAS  Google Scholar 

  136. Lu W, Xiaoyun Q, Liu S, Chang G (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351–5357

    Article  CAS  Google Scholar 

  137. Castillo AS, Avidad MA, Pritz C, Robles MC, Fernández B, Ruedas-Rama MJ, Megia-Fernández A, Lapresta-Fernández A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49(11):1103–1105

    Article  CAS  Google Scholar 

  138. Zhang YL, Wang L, Zhang HC, Yang L, Wang HY, Kang ZH, Lee ST (2013) Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv 3(11):3733–3738

    Article  CAS  Google Scholar 

  139. Wee SS, Ng YH, Ng SM (2013) Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 116:71–76

    Article  CAS  Google Scholar 

  140. Gomez IJ, Arnaiz B, Cacioppo M, Arcudi F, Prato M (2018) Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B 6:5540–5548

    Article  CAS  Google Scholar 

  141. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420

    Article  CAS  Google Scholar 

  142. Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, Cahng HT (2014) Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6:13119–13125

    Article  CAS  Google Scholar 

  143. Zhang SW, Li JX, Zeng MY, Xu JZ, Wang XK, Hu WP (2014) Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6:4157–4162

    Article  CAS  Google Scholar 

  144. Liu S, Yu B, Zhang T (2014) Nitrogen-doped carbon nanodots as a reducing agent to synthesize Ag nanoparticles for non-enzymatic hydrogen peroxide detection. RSC Adv 4:544–548

    Article  CAS  Google Scholar 

  145. Xiong Y, Schneider J, Ushakova EV, Rogach AL (2018) Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 23:124–139

    Article  CAS  Google Scholar 

  146. Wang W, Wang B, Embrechts H, Damm C, Cadranel A, Strauss V (2017) Shedding light on the effective fluorophore structure of high fluorescene quantum yield carbon nanodots. RSC Adv 7:24771–24780

    Article  CAS  Google Scholar 

  147. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52(2013):7800–7804

    Article  CAS  Google Scholar 

  148. Zhu S, Zhao X, Song Y, Lu S, Yang B (2016) Beyond bottom-up carbon nanodots: citric-acid derived organic molecules. Nano Today 11(2):128–132

    Article  CAS  Google Scholar 

  149. Sell WJ, Easterfield TH (1893) LXXIII.-Studies on citrazinic acid. Part I. J Chem Soc Trans 63:1035–1051

    Article  CAS  Google Scholar 

  150. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  Google Scholar 

  151. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  CAS  Google Scholar 

  152. Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M, Huang Y, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    Article  CAS  Google Scholar 

  153. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  CAS  Google Scholar 

  154. Pal T, Mohiyuddin S, Packirisamy G (2018) Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: in vitro and in vivo bioimaging and other applications. ACS Omega 3:831–843

    Article  CAS  Google Scholar 

  155. Wei XM, Xu Y, Li YH, Yin XB, He XW (2014) Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv 4:44504–44508

    Article  CAS  Google Scholar 

  156. Bao X, Yuan Y, Chen J, Zhang B, Li D, Zhou D, Jing P, Xu G, Yang Y, Hola K, Shen D, Wu C, Song L, Liu C, Zbořil R, Qu S (2018) In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci Appl 7:91

    Article  CAS  Google Scholar 

  157. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed 51(49):12215–12218

    Article  CAS  Google Scholar 

  158. Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D (2016) Toward efficient orange emissive carbon nanodots through conjugated sp2 -domain controlling and surface charges engineering. Adv Mater 28(18):3516–3521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan K. Modi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithalani, R., Patel, D., Modi, C.K. et al. Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. J Mater Sci 55, 8769–8792 (2020). https://doi.org/10.1007/s10853-020-04671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04671-x

Navigation