Skip to main content
Log in

UV-light-assisted preparation of MoO3−x/Ag NPs film and investigation on the SERS performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) technique is a powerful spectrum analysis technique for the ultra-low molecular trace detection. Conventionally, noble metals like silver (Ag) and gold (Au) are used to prepare the SERS substrates; however, limitations of complicated experimental designs and sophisticated process steps impede their wide applications in practice. Recently, metal oxides arise as a promising material for SERS application, but relatively weak Raman signal enhancement and poor material stability still pose as a challenge. Here, a UV-light-assisted fabrication of MoO3−x/silver nanoparticles (MoO3−x/Ag NPs) film is proposed. In the experiment, the sub-transition-metal-oxide of MoO3−x was used as the Raman chemical enhancement substrate as well as the reducing agent. Through the spin-coating of MoO3−x layer on the silicon substrate and UV-light-assisted reduction of silver nitride (AgNO3) on the MoO3−x layer, a novel MoO3−x/Ag NPs one-layer film was fabricated. Using the Rhodamine B (RhB) as the Raman reporter, SERS measurement shows that enhancement factor (EF) of 1.195 × 106 could be achieved. Moreover, a Raman signal amplifying strategy is further demonstrated by constructing MoO3−x/Ag NPs multi-layer films. And result evidences that maximum gain of 2.07 for the RhB Raman peak at 1280 cm−1 can be obtained on the MoO3−x/Ag NPs three-layer film when referred to that on the MoO3−x/Ag NPs one-layer film. Meanwhile, the EF of the MoO3−x/Ag NPs three-layer film is also improved to 2.985 × 106, giving the minimum detectable concentration of 10−9 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials. Nat Rev Mate 1:16021-1–16021-16

    Google Scholar 

  2. Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in-vivo biosensing. Nat. Rev. Chem. 1:0060-1–0060-19

    Article  CAS  Google Scholar 

  3. Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  Google Scholar 

  4. Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46:3866–3885

    Article  CAS  Google Scholar 

  5. Niu W, Chua YAA, Zhang W, Huang H, Lu X (2015) Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc 137:10460–10463

    Article  CAS  Google Scholar 

  6. Liu K, Bai Y, Zhang L et al (2016) Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16:3675–3681

    Article  CAS  Google Scholar 

  7. Ye S, Benz F, Wheeler MC et al (2016) One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale 8:14932–14942

    Article  CAS  Google Scholar 

  8. Zhu C, Meng G, Zheng P et al (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater 28:4871–4876

    Article  CAS  Google Scholar 

  9. Tian Y, Liu H, Chen Y et al (2019) Seedless one-spot synthesis of 3D and 2D Ag Nanoflowers for multiple phase SERS-based molecule detection. Sens Actuators B: Chem 301:127142(1–13)

    Article  CAS  Google Scholar 

  10. Ashley MJ, Bourgeois MR, Murthy RR et al (2018) Shape and size control of substrate-grown gold nanoparticles for surface-enhanced Raman spectroscopy detection of chemical analytes. J Phys Chem C 122:2307–2314

    Article  CAS  Google Scholar 

  11. He S, Kyaw YME, Tan EKM et al (2018) Quantitative and label-free detection of protein kinase a activity based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem 90:6071–6080

    Article  CAS  Google Scholar 

  12. Xu J, Wu D, Li Y, Xu J, Gao Z, Song Y-Y (2018) Plasmon-triggered hot-spot excitation on SERS substrates for bacterial inactivation and in situ monitoring. ACS Appl Mater Interfaces 10:25219–25227

    Article  CAS  Google Scholar 

  13. Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115:8896–8943

    Article  CAS  Google Scholar 

  14. Lv W, Gu C, Zeng S, Han J, Jiang T, Zhou J (2018) One-pot synthesis of multi-branch gold nanoparticles and investigation of their SERS performance. Biosensors 8:113(1–10)

    Article  CAS  Google Scholar 

  15. Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C (2017) Dual quantification of MicroRNAs and telomerase in living cells. J Am Chem Soc 139:11752–11759

    Article  CAS  Google Scholar 

  16. Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 109:12544–12548

    Article  CAS  Google Scholar 

  17. Jiang T, Chen G, Tian X, Tang S, Zhou J, Feng Y, Chen H (2018) Construction of long narrow gaps in Ag nanoplates. J Am Chem Soc 140:15560–15563

    Article  CAS  Google Scholar 

  18. Li H, Yang Q, Hou J, Li Y, Li M, Song Y (2018) Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection. Adv Funct Mater 28:1800448(1–7)

    Google Scholar 

  19. Liu Z (2017) One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat Commun 8:14910(1–7)

    Google Scholar 

  20. Yin G, Bai S, Tu X et al (2019) Highly sensitive and stable SERS substrate fabricated by Co-sputtering and atomic layer deposition. Nanoscale Res Lett 14:168

    Article  CAS  Google Scholar 

  21. Zhou S, Zhao M, Yang T-H, Xia Y (2019) Decahedral nanocrystals of noble metals: synthesis, characterization, and applications. Mater Today 22:108–131

    Article  CAS  Google Scholar 

  22. Sun L, Yu Z, Lin M (2019) Synthesis of polyhedral gold nanostars as surface-enhanced raman spectroscopy substrates for measurement of thiram in peach juice. Analyst 144:4820–4825

    Article  CAS  Google Scholar 

  23. Cao Y-Q, Qin K, Zhu L, Qian X, Zhang X-J, Wu D, Li A-D (2017) Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced Raman scattering. Sci. Rep 7:5161(7–8)

    Google Scholar 

  24. Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzán LM (2018) Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12:8531–8539

    Article  CAS  Google Scholar 

  25. Zhou S, Li J, Gilroy KD et al (2016) Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 10:9861–9870

    Article  CAS  Google Scholar 

  26. Lin D, Wu Z, Li S et al (2017) Large-area au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 11:1478–1487

    Article  CAS  Google Scholar 

  27. Chen H-C, Hsu T-C, Liu Y-C, Yang K-H (2014) Surfactant-assisted preparation of surface-enhanced Raman scattering-active substrates. RSC Adv. 4:10553–10559

    Article  CAS  Google Scholar 

  28. Wall MA, Harmsen S, Pal S et al (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29:1605622(1–8)

    Google Scholar 

  29. Cong S, Yuan Y, Chen Z et al (2017) Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun 6:7800(1–7)

    Google Scholar 

  30. Zheng Z, Cong S, Gong W et al (2017) Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Comm 8:1993(1–10)

    Google Scholar 

  31. Zhou C, Sun L, Zhang F et al (2019) Electrical tuning of the SERS enhancement by precise defect density control. ACS Appl Mater Interfaces 11:34091–34099

    Article  CAS  Google Scholar 

  32. Wu H, Wang H, Li G (2017) Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 142:326–335

    Article  CAS  Google Scholar 

  33. Johansson MB, Mattsson A, Lindquist S-E, Niklasson GA, Österlund L (2017) The importance of oxygen vacancies in nanocrystalline WO3–x thin films prepared by DC magnetron sputtering for achieving high photoelectrochemical efficiency. J Phys Chem C 121:7412–7420

    Article  CAS  Google Scholar 

  34. Sun L, Hu H, Zhan D et al (2014) Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10:1090–1095

    Article  CAS  Google Scholar 

  35. Lu Z, Si H, Li Z et al (2018) Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis. Opt Express 26:21626(1–6)

    Google Scholar 

  36. Zhang Q, Li X, Ma Q et al (2017) A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat Commun 8:14093

    Article  CAS  Google Scholar 

  37. Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S (2013) Surface-enhanced Raman scattering spectra of adsorbates on Cu2O Nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5:2784–2789

    Article  CAS  Google Scholar 

  38. Zheng X, Ren F, Zhang S et al (2017) A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity. ACS Appl Mater Interfaces 9:14534–14544

    Article  CAS  Google Scholar 

  39. Prabhu BR, Bramhaiah K, Singh KK, John NS (2019) Single sea Urchin–MoO3 nanostructure for surface enhanced Raman spectroscopy of dyes. Nanosc Adv 1:2426–2434

    Article  Google Scholar 

  40. Zhan Y, Liu Y, Zu H et al (2018) Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale 10:5997–6004

    Article  CAS  Google Scholar 

  41. Song G, Shen J, Jiang F et al (2014) Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces 6:3915–3922

    Article  CAS  Google Scholar 

  42. Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sens Actuators B: Chem 259:59–63

    Article  CAS  Google Scholar 

  43. Wang J, Yang Y, Li H et al (2019) Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem Sci 10:6330–6335

    Article  CAS  Google Scholar 

  44. Zhang BY, Zavabeti A, Chrimes AF et al (2018) Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv Funct Mater 28:1706006

    Article  CAS  Google Scholar 

  45. Guo Y, Zhuang Z, Liu Z et al (2019) Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles. Appl Surf Sci 480:1162–1170

    Article  CAS  Google Scholar 

  46. Liang X, Zhang X-J, You T-T, Wang G-S, Yin P-G, Guo L (2016) Controlled assembly of one-dimensional MoO3@Au hybrid nanostructures as SERS substrates for sensitive melamine detection. CrystEngComm 18:7805–7813

    Article  CAS  Google Scholar 

  47. Kumar S, Lodhi DK, Singh JP (2016) Highly sensitive multifunctional recyclable Ag–TiO2 nanorod SERS substrates for photocatalytic degradation and detection of dye molecules. RSC Adv 6:45120–45126

    Article  CAS  Google Scholar 

  48. Jiang X, Sun X, Yin D et al (2017) Recyclable Au–TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys Chem Chem Phys 19:11212–11219

    Article  CAS  Google Scholar 

  49. Huang J, Ma D, Chen F, Chen D, Bai M, Xu K, Zhao Y (2017) Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing. ACS Appl Mater Interfaces 9:7436–7446

    Article  CAS  Google Scholar 

  50. Zhou YF, Bi K, Wan L et al (2015) Enhanced adsorption and photocatalysis properties of molybdenum oxide ultrathin nanobelts. Mate. Lett. 154:132–135

    Article  CAS  Google Scholar 

  51. Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D, Ma X (2019) MoO3 nanosheet-assisted photochemical reduction synthesis of Au nanoparticles for surface-enhanced Raman scattering substrates. Sens Actuators B: Chem 279:320–326

    Article  CAS  Google Scholar 

  52. Yuksel R, Coskun S, Unalan HE (2016) Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes. Electrochim Acta 193:39–44

    Article  CAS  Google Scholar 

  53. Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3−x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J 18:15283–15287

    Article  CAS  Google Scholar 

  54. Fodjo EK, Li D-W, Marius NP, Albert T, Long Y-T (2013) Low temperature synthesis and SERS application of silver molybdenum oxides. J Mater Chem A 1:2558–2566

    Article  CAS  Google Scholar 

  55. Kleinman SL, Frontiera RR, Henry A-I, Dieringer JA, Van Duyne RP (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15:21–36

    Article  CAS  Google Scholar 

  56. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light, Angew. Chem Int Ed 53:2910–2914

    Article  CAS  Google Scholar 

  57. Lin S, Hasi W-L-J, Lin X et al (2015) Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294

    Article  CAS  Google Scholar 

  58. Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on Au-Coated ZnO nanorods. ACS Appl Mater Interfaces 3:2557–2563

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was funded by National Natural Science Funding of China (Grant No. 61704095), Natural Science Foundation of Zhejiang Province (Grant No. LY19F050002), the Natural Science Funding of Ningbo (Grant No. 2019A610058) and the K.C. Wong Magna Fund in Ningbo University. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 798916.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally. And all authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Chenjie Gu or Tao Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Zhou, C., Wang, J. et al. UV-light-assisted preparation of MoO3−x/Ag NPs film and investigation on the SERS performance. J Mater Sci 55, 8868–8880 (2020). https://doi.org/10.1007/s10853-020-04669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04669-5

Navigation