Skip to main content
Log in

Two-dimensional intrinsic ferromagnetic half-metals: monolayers Mn3X4 (X = Te, Se, S)

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inspired by the recent progress on the intrinsic two-dimensional (2D) ferromagnetism, we studied three potential 2D magnets (Mn3X4; X = Te, Se, S) by performing the first-principles calculation based on the density functional theory and Monte Carlo simulations. We predicted intrinsic ferromagnetism in monolayers Mn3Te4 and Mn3Se4, which are half-metallic with 100% spin polarization at the Fermi level. The half-metal band gap of monolayers Mn3Te4 and Mn3Se4 is 0.62 and 0.83 eV, respectively. More importantly, the Curie temperatures of Mn3Te4 and Mn3Se4 were estimated to be above the room temperature by performing the Monte Carlo simulations, suggesting ferromagnetic ordering at room temperature. Additionally, we calculated the phonon spectrum, elastic modulus, and performed the ab initio molecular dynamics simulation which proves that monolayers Mn3Te4 and Mn3Se4 are thermally, dynamically and mechanically stable. Plus, mechanical stripping method was proven to be the feasible way to obtain single-layer Mn3X4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Xu XD, Wang Y, Xiao D, Heinz TF (2015) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350

    Article  CAS  Google Scholar 

  3. Guo J, Sun Y, Liu B, Zhang Q, Peng Q (2017) Two-dimensional scandium-based carbides (MXene): band gap modulation and optical properties. J Alloys Compd 712(25):752–759

    Article  CAS  Google Scholar 

  4. Tsen AW, Hunt B, Kim YD, Yuan ZJ, Jia S, Cava RJ, Hong J, Kim P, Dean CR, Pasupathy AN (2015) Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat Phys 12:208–212

    Article  CAS  Google Scholar 

  5. Qian XF, Liu JW, Fu L, Li J (2014) Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346(6215):1344–1347

    Article  CAS  Google Scholar 

  6. Saito Y, Nakamura Y, Bahramy MS, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y, Iwasa Y (2016) Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat Phys 12:144–149

    Article  CAS  Google Scholar 

  7. Lu JM, Zheliuk O, Leermakers I, Yuan NFQ, Zeitler U, Law KT, Ye JT (2015) Evidence for two-dimensional ising superconductivity in gated MoS2. Science 350(6266):1353–1357

    Article  CAS  Google Scholar 

  8. Xi XX, Wang ZF, Zhao WW, Park JH, Law KT, Berger H, Forro L, Shan J, Mak KF (2016) Ising pairing in superconducting NbSe2 atomic layers. Nat Phys 12:139–143

    Article  CAS  Google Scholar 

  9. McGuire MA, Dixit H, Cooper VR, Sales BC (2015) Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater 27(2):612–620

    Article  CAS  Google Scholar 

  10. Magda GZ, Jin XZ, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang CY, Biro LP, Tapaszto L (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514:608–611

    Article  CAS  Google Scholar 

  11. Zhang WB, Qu Q, Zhu P, Lam CH (2015) Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C 3(48):12457–12468

    Article  CAS  Google Scholar 

  12. Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei ZM (2017) A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun 8:1958

    Article  CAS  Google Scholar 

  13. Sivadas N, Daniels MW, Swendsen RH, Okamoto S, Xiao D (2015) Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B 91(23):235425

    Article  CAS  Google Scholar 

  14. Nair RR, Sepioni M, Tsai IL, Lehtinen O, Keinonen J, Krasheninnikov AV, Thomson T, Geim AK, Grigorieva IV (2012) Spin-half paramagnetism in graphene induced by point defects. Nature Phys 8:199–202

    Article  CAS  Google Scholar 

  15. Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:5

    Article  CAS  Google Scholar 

  16. Zhou YG, Yang P, Zu HY, Gao F, Zu XT (2013) Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidot. Phys Chem Chem Phys 15(25):10385–10394

    Article  CAS  Google Scholar 

  17. Cao D, Cai MQ, Hu WY, Yu P, Huang HT (2011) Vacancy-induced magnetism in BaTiO3 (001) thin films based on density functional theory. Phys Chem Chem Phys 13(10):4738–4745

    Article  CAS  Google Scholar 

  18. Zhou YG, Wang ZG, Yang P, Zu XT, Yang L, Sun X, Gao F (2012) Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 6(11):9727–9736

    Article  CAS  Google Scholar 

  19. Duplock EJ, Scheffler M, Lindan PJD (2004) Hallmark of perfect graphene. Phys Rev Lett 92:225502

    Article  CAS  Google Scholar 

  20. Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75(12):125408

    Article  CAS  Google Scholar 

  21. Wang YS, Song NH, Dong N, Luo SJ, Jia M, Ku K, Zheng YF, Ling H, Li M (2019) Manipulating electronic and magnetic properties of black phosphorene with 4d series transition metal adsorption. Phys Lett A 383(23):2765–2771

    Article  CAS  Google Scholar 

  22. Kulish VV (2017) Surface reactivity and vacancy defects in single-layer borophene polymorphs. Phys Chem Chem Phys 19(18):11273–11281

    Article  CAS  Google Scholar 

  23. Sevincli H, Topsakal M, Durgun E, Ciraci S (2008) Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys Rev B Condens Matter Mater Phys 77(19):195434

    Article  CAS  Google Scholar 

  24. Li ZJ, Xu W, Yu YQ, Du HY, Zhen K, Wang J, Luo LB, Qiu HL, Yang XB (2016) Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J Mater Chem C 4(2):362–370

    Article  CAS  Google Scholar 

  25. Onat B, Hallioglu L, Ipek S, Durgun E (2017) Tuning electronic properties of monolayer hexagonal boron phosphide with group III–IV–V dopants. J Phys Chem C 121(8):4583–4592

    Article  CAS  Google Scholar 

  26. He -JJ, Ding GQ, Zhong CZ, Li S, Li DF, Zhang G (2019) Remarkably enhanced ferromagnetism in super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption. J Mater Chem C 7(17):5084–5093

    Article  CAS  Google Scholar 

  27. Sun M, Ren Q, Zhao Y, Chou JP, Yu J, Tang WC (2017) Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study. Carbon 120:265–273

    Article  CAS  Google Scholar 

  28. Sun M, Ren Q, Zhao Y, Wang S, Yu J, Tang WC (2016) Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J Appl Phys 119(14):143904

    Article  CAS  Google Scholar 

  29. Mermin ND, Wagner H (1966) Absence of ferromagnetism or anti-ferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17(22):1133–1136

    Article  CAS  Google Scholar 

  30. Lin MW, Zhuang HL, Yan JQ, Ward TZ, Puretzky AA, Rouleau CM, Gai Z, Liang LB, Meunier V, Sumpter BG, Ganesh P, Kent PRC, Geohegan DB, Mandrus DG, Xiao K (2016) Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C 4:315–322

    Article  CAS  Google Scholar 

  31. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu XD (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273

    Article  CAS  Google Scholar 

  32. Gong C, Li L, Li ZL, Ji HW, Stern A, Xia Y, Cao T, Bao W, Wang CZ, Wang Y, Qiu ZQ, Cava RJ, Louie SG, Xia Zhang X (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269

    Article  CAS  Google Scholar 

  33. Xing WY, Chen YY, Odenthal PM, Zhang X, Yuan W, Su T, Song Q, Wang TY, Zhong JN, Jia S, Xie XC, Li Y, Han W (2017) Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater 4(2):024009

    Article  CAS  Google Scholar 

  34. Zhang XD, Zhang JJ, Zhao JY, Pan BC, Kong MG, Chen J, Xie Y (2012) Half-metallic ferromagnetism in synthetic Co9Se8 nanosheets with atomic thickness. J Am Chem Soc 134(29):11908–11911

    Article  CAS  Google Scholar 

  35. Cheng WR, He JF, Yao T, Sun ZH, Jiang Y, Lin QH, Jiang S, Hu FC, Xie Z, He B, Yan WS, Wei SQ (2014) Half-unit-cell α-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism. J Am Chem Soc 136(29):10393–10398

    Article  CAS  Google Scholar 

  36. Casto LD, Clune AJ, Yokosuk MO, Musfeldt JL, Williams TJ, Zhuang HL, Lin MW, Xiao K, Hennig RG, Sales BC, Yan JQ, Mandrus D (2015) Strong spin-lattice coupling in CrSiTe3. APL Mater 3:041515

    Article  CAS  Google Scholar 

  37. May AF, Calder S, Cantoni C, Cao H, McGuire MA (2016) Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys Rev B 93:014411

    Article  CAS  Google Scholar 

  38. Li H, Ruan SC, Zeng YJ (2019) Intrinsic Van Der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv Mater 31:1900065

    Article  CAS  Google Scholar 

  39. Zhang WB, Qu Q, Zhu P, Lam CH (2015) Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C 3:12457–12468

    Article  CAS  Google Scholar 

  40. Li XX, Yang JL (2014) CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C 2:7071–7076

    Article  CAS  Google Scholar 

  41. Zhuang HL, Xie Y, Kent PRC, Ganesh P (2015) Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B 92(3):035407

    Article  CAS  Google Scholar 

  42. Webster L, Yan JA (2018) Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B 98(14):144411

    Article  CAS  Google Scholar 

  43. Wu QS, Zhang YH, Zhou QH, Wang JL, Zeng XC (2018) Transition-metal dihydride monolayers: a new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity. J Phys Chem Lett 9(15):4260–4266

    Article  CAS  Google Scholar 

  44. Wang B, Wu QS, Zhang YH, Guo YL, Zhang XW, Zhou QH, Dong S, Wang JL (2018) High curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. Nanoscale Horiz 3:551–555

    Article  CAS  Google Scholar 

  45. Miao NH, Xu B, Zhu LG, Zhou J, Sun ZM (2018) 2D intrinsic ferromagnets from van der waals antiferromagnets. J Am Chem Soc 140(7):2417–2420

    Article  CAS  Google Scholar 

  46. Kulish VV, Huang W (2017) Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J Mater Chem C 5:8734–8741

    Article  CAS  Google Scholar 

  47. Kumar H, Frey NC, Dong L, Anasori B, Gogotsi Y, Shenoy VB (2017) Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11(8):7648–7655

    Article  CAS  Google Scholar 

  48. He JJ, Lyu P, Nachtgall P (2016) New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J Mater Chem C 4(47):11143–11149

    Article  CAS  Google Scholar 

  49. Deng Y, Yu Y, Song Y, Zhang J, Wang NZ, Sun Z, Yi Y, Wu YZ, Wu S, Zhu J, Wang J, Chen XH, Zhang Y (2018) Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563:94–99

    Article  CAS  Google Scholar 

  50. Jiang S, Li L, Wang Z, Mark KF, Shan J (2018) Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol 13:549–553

    Article  CAS  Google Scholar 

  51. Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z (2018) Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nano 13:554–559

    Article  CAS  Google Scholar 

  52. Guo SD, Liu BG (2009) Stable half-metallic ferromagnetism in nonstoichiometric cubic binary chromium chalcogenides. Europhys Lett 88:67007

    Article  CAS  Google Scholar 

  53. Zhu Y, Kong XG, Rhone TD, Guo H (2018) Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater 2(8):081001

    Article  CAS  Google Scholar 

  54. Zhang XW, Wang B, Guo YL, Zhang YH, Chen YF, Wang JL (2019) High curie temperature and intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S, Se, Te) nanosheets. Nanoscale Horiz 4:859–866

    Article  CAS  Google Scholar 

  55. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Commun Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  56. Cristol S, Paul JF, Payen E, Bougeard D, Clemendot S, Hutschka F (2000) Theoretical study of the MoS2 (100) surface: a chemical potential analysis of sulfur and hydrogen coverage. J Phys Chem B 104(47):11220–11229

    Article  CAS  Google Scholar 

  57. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  58. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  59. Hobbs D, Kresse G, Hafner J (2000) Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62(17):11556

    Article  CAS  Google Scholar 

  60. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  61. Bucko T, Hafner J, Lebegue S, Angyan JG (2010) Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der waals corrections. J Phys Chem A 114(43):11814–11824

    Article  CAS  Google Scholar 

  62. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):5467

    Article  Google Scholar 

  63. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys. Rev. B 13(12):5188

    Article  Google Scholar 

  64. Ushakov AV, Kukusta DA, Yaresko AN, Khomskii DI (2013) Magnetism of layered chromium sulfides MCrS2 (M = Li, Na, K, Ag, and Au): a first-principles study. Phys Rev B 87(1):014418

    Article  CAS  Google Scholar 

  65. Goodenough JB (1955) Theory of the role of covalence in the perovskite-type manganites [La, M(II)] MnO3. Phys Rev 100:564

    Article  CAS  Google Scholar 

  66. Kanamori J (1960) Crystal distortion in magnetic compounds. J Appl Phys 31(5):S14–S23

    Article  Google Scholar 

  67. Cadelano E, Palla PL, Giordano S, Colombo L (2010) Elastic properties of hydrogenated graphene. Phys Rev B 82(23):235414

    Article  CAS  Google Scholar 

  68. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI, Geim AK (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8(8):2442–2446

    Article  CAS  Google Scholar 

  69. Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69(15):155406

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National key R&D Program of China (2018YFB0703800) and the Natural Science Fund of Shaanxi Province for distinguished Young Scholars (2019JC-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fan, X., Shen, Z. et al. Two-dimensional intrinsic ferromagnetic half-metals: monolayers Mn3X4 (X = Te, Se, S). J Mater Sci 55, 7680–7690 (2020). https://doi.org/10.1007/s10853-020-04582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04582-x

Navigation