Skip to main content

Advertisement

Log in

Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure and magnetic properties of LaFe11.6Si1.4/Ce40Co60 bulk composites prepared by hot pressing sintering (HPS), followed by high-temperature diffusion annealing, were investigated. During the HPS process, the La(Fe,Si)13 alloy powder particles combined with Ce40Co60 binder and a porous structure with high mechanical strength were obtained. The addition of Ce40Co60 can also promote the peritectic reaction. Annealing has important effects on the magnetocaloric properties due to the diffusion of Ce and Co into the La(Fe,Si)13 phase during annealing. HPS samples were annealed at 1373 K for 24 h, and a table-like magnetocaloric effect, exhibiting a constant high magnetic entropy change (− ∆SM) of ~ 4.0 J/(kg K) in a commercially useful temperature region of 28 K (236–264 K), was obtained for a field change of 2 T. The values of full width at half maximum of (− ∆SM)–T plots (ΔTFWHM) and enhanced refrigeration capacity for the composites are 55 K and 173 J/kg, respectively, for a field change of 2 T. The composites exhibit high compressive strength of up to 312 MPa. The present results indicate that LaFe11.6Si1.4/Ce40Co60 bulk composites can meet the requirement of near room temperature magnetic refrigeration based on the Ericsson cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brown GV (1976) Magnetic heat pumping near room temperature. J Appl Phys 47:3673–3680

    CAS  Google Scholar 

  2. Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539

    CAS  Google Scholar 

  3. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    CAS  Google Scholar 

  4. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    CAS  Google Scholar 

  5. Hu FX, Shen BG, Sun JR, Cheng ZH, Rao GH, Zhang XX (2001) Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett 78:3675–3677

    CAS  Google Scholar 

  6. Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys Rev B 67:552–555

    Google Scholar 

  7. Zhong XC, Tang PF, Gao BB, Min JX, Liu ZW, Zheng ZG, Zeng DC, Yu HY, Qiu WQ (2013) Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons. Sci China-Phys Mech Astron 56:1096–1099

    CAS  Google Scholar 

  8. Lyubina J, Schafer R, Martin N, Schultz L, Gutfleisch O (2010) Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv Mater 22:3735–3739

    CAS  Google Scholar 

  9. Hu FX, Shen BG, Sun JR, Zhang XX (2000) Great magnetic entropy change in La(Fe,M)13 (M = Si, Al) with Co doping. Chin Phys 9:550–556

    Google Scholar 

  10. Hu FX, Gao J, Qian XL, Ilyn M, Tishin AM, Sun JR, Shen BG (2005) Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−xCox)11.9Si1.1. J Appl Phys 97:10M303

    Google Scholar 

  11. Fujieda S, Fujita A, Fukamichi K (2004) Enhancements of magnetocaloric effects in La(Fe0.90Si0.10)13 and its hydride by partial substitution of Ce for La. Mater Trans 45:3228–3231

    CAS  Google Scholar 

  12. Liu J, Krautz M, Skokov K, Woodcock TG, Gutfleisch O (2011) Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys. Acta Mater 59:3602–3611

    CAS  Google Scholar 

  13. Yan A, Müller KH, Gutfleisch O (2005) Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons. J Appl Phys 97:036102

    Google Scholar 

  14. Gutfleisch O, Yan A, Müller KH (2005) Large magnetocaloric effect in melt-spun LaFe13−xSix. J Appl Phys 97:10M305

    Google Scholar 

  15. Zhong XC, Feng XL, Huang JH, Zhang H, Huang YL, Liu ZW, Jiao DL (2018) Microstructure evolution and large magnetocaloric effect of La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 alloy prepared by strip-casting and annealing. AIP Adv 8:048102

    Google Scholar 

  16. Gomes AM, Proveti JR, Takeuchi AY, Passamani EC, Larica C, Guimarães AP (2006) La(Fe1−xCox)11.44Al1.56: a composite system for Ericsson-cycle-based magnetic refrigerators. J Appl Phys 99:116107

    Google Scholar 

  17. Gębara P, Pawlik P (2017) Broadening of temperature working range in magnetocaloric La(Fe,Co,Si)13-based multicomposite. J Magn Magn Mater 442:145–151

    Google Scholar 

  18. M’nassri R (2015) Enhancement of refrigeration capacity and table-like magnetocaloric effect in LaFe10.7Co0.8Si1.5/La0.6Pr0.4Fe10.7Co0.8Si1.5 composite. J Supercond Novel Magn 29:207–213

    Google Scholar 

  19. Zhang H, Sun YJ, Niu E, Hu FX, Sun JR, Shen BG (2014) Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe,Si)13-based magnetic refrigeration materials. Appl Phys Lett 104:062407

    Google Scholar 

  20. Liu J, Zhang MX, Shao YY, Yan AR (2015) LaFe11.6Si1.4/Cu magnetocaloric composites prepared by hot pressing. IEEE Trans Magn 51:2501502

    Google Scholar 

  21. Zhang H, Liu J, Zhang MX, Shao YY, Li Y, Yan A (2016) LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr Mater 120:58–61

    CAS  Google Scholar 

  22. Hansena BR, Kuhn LT, Bahl CRH, Lundberg M, Ancona-Torres C, Katter M (2010) Properties of magnetocaloric La(Fe,Co,Si)13 produced by powder metallurgy. J Magn Magn Mater 322:3447–3454

    Google Scholar 

  23. Dong XT, Zhong XC, Peng DR, Huang JH, Zhang H, Jiao DL, Liu ZW, Ramanujan RV (2018) La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing. J Alloys Compd 737:568–574

    CAS  Google Scholar 

  24. Zhong XC, Feng XL, Huang JH, Huang YL, Liu ZW, Ramanujan RV (2018) Influence of particle size on the mechanical properties and magnetocaloric effect of La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn composites. J Magn Magn Mater 463:23–27

    CAS  Google Scholar 

  25. Gang ZL, Wu QM, Sun NK, Ding Z, Li LW (2018) Study of the microstructure, mechanical, and magnetic properties of LaFe11.6Si1.4Hy/Bi magnetocaloric composites. Materials 11:943

    Google Scholar 

  26. Fan WB, Hou YH, Ge XJ, Huang YL, Luo JM, Zhong ZC (2018) Microstructure and improved magnetocaloric properties: LaFeSi/LaAl magnets prepared by spark plasma sintering technique. J Phys D Appl Phys 51:115003

    Google Scholar 

  27. Huang JH, Sun NK, Liu CL, Ge YM, Zhang T, Liu F, Si PZ (2014) Effect of particle size on the hysteretic behavior and magnetocaloric effect of La0.5Pr0.5Fe11.4Si1.6 compound. Acta Metall Sin (Engl Lett) 27:27–30

    CAS  Google Scholar 

  28. Hu FX, Chen L, Wang J, Bao LF, Sun JR, Shen BG (2012) Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first-order systems. Appl Phys Lett 100:072403

    Google Scholar 

  29. Krautz M, Funk A, Skokov KP, Gottschall T, Eckert J, Gutfleisch O, Waske A (2015) A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix. Scr Mater 95:50–53

    CAS  Google Scholar 

  30. Zhong XC, Feng XL, Huang JH, Jiao DL, Zhang H, Qiu WQ, Liu ZW, Ramanujan RV (2019) A bimodal particle size distribution enhances mechanical and magnetocaloric properties of low-temperature hot pressed Sn-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 bulk composites. J Magn Magn Mater 469:133–137

    CAS  Google Scholar 

  31. Zhou Q, Liu ZW, Zhong XC, Zhang GQ (2015) Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion. Mater Des 86:114–120

    CAS  Google Scholar 

  32. Löwe K, Liu J, Skokov K, Moore JD, Sepehri-Amin H, Hono K, Katter M, Gutfleisch O (2012) The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Mater 60:4268–4276

    Google Scholar 

  33. Chen X, Chen YG, Tang YB (2011) The effect of high-temperature annealing on LaFe11.5Si1.5 and the magnetocaloric properties of La1−xCexFe11.5Si1.5 compounds. Rare Met 30:343–347

    Google Scholar 

  34. Chen X, Chen YG, Tang YB (2012) Phase relation of LaFe11.6Si1.4 compounds annealed at different high-temperature and the magnetic property of LaFe11.6−xCoxSi1.4 compounds. Bull Mater Sci 35:175–182

    CAS  Google Scholar 

  35. Shen J, Li YX, Sun JR, Shen BG (2009) Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr and Nd. Chin Phys 18:2058–2062

    CAS  Google Scholar 

  36. Predel B (2012) Ce–Co (cerium–cobalt) phase diagram. In: Predel B (ed) Phase equilibria, crystallographic and thermodynamic data of binary alloys (Landolt–Börnstein: numerical data and functional relationships in science and technology-new series), group IV: physical chemistry, vol 12B. Springer, Berlin, pp 190–192

    Google Scholar 

  37. Wang BZ, Cao XM, Wen M (2000) The researching for property of cooling by magnetic cycling about Re2Fe17 type rare earth metal compounds. J Hebei Univ Technol 29:87–91

    Google Scholar 

  38. Zhang MX, Liu J, Zhang Y, Dong JD, Yan AR, Skokov KP, Gutfleisch O (2015) Large entropy change, adiabatic temperature change, and small hysteresis in La(Fe,Mn)11.6Si1.4 strip-cast flakes. J Magn Magn Mater 377:90–94

    CAS  Google Scholar 

  39. Shao YY, Zhang MX, Luo HB, Yan AR, Liu J (2015) Enhanced thermal conductivity in off-stoichiometric La–(Fe,Co)–Si magnetocaloric alloys. Appl Phys Lett 107:152403

    Google Scholar 

  40. Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17

    Google Scholar 

  41. Teixeira CS, Krautz M, Moore JD, Skokov K, Liu J, Wendhausen PAP, Gutfleisch O (2012) Effect of carbon on magnetocaloric effect of LaFe11.6Si1.4 compounds and on the thermal stability of its hydrides. J Appl Phys 111:07A927

    Google Scholar 

  42. Liu J, Moore JD, Skokov KP, Krautz M, Löwe K, Barcza A, Katter M, Gutfleisch O (2012) Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scr Mater. 67:584–589

    CAS  Google Scholar 

  43. Gschneidner KA Jr, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Res 30:387–429

    CAS  Google Scholar 

  44. Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA Jr (1998) Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B 57:3478–3490

    Google Scholar 

  45. Liu GL, Zhao DQ, Bai HY, Wang WH, Pan MX (2016) Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J Phys D Appl Phys 49:055004

    Google Scholar 

  46. Katter M, Zellmann V, Reppel GW, Uestuener K (2008) Magnetocaloric properties of La(Fe,Co,Si)13 bulk material prepared by powder metallurgy. IEEE Trans Magn 44:3044–3047

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51874143, 51671022, 51261001), the Natural Science Foundation of Guangdong Province (Grant Nos. 2019A1515010970, 2017A030313317), the National Key Research & Development Program of China (Materials Genome Initiative) (Grant No. 2017YFB0702703) and the Guangzhou Municipal Science and Technology Program (Grant No. 201904010030). This research is also conducted by Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602. Dr. Zhong Xichun also thanks the China Scholarship Council ([2017]3059, No. 201706155021) for financial support to visit Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. C. Zhong.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X.C., Dong, X.T., Peng, D.R. et al. Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion. J Mater Sci 55, 5908–5919 (2020). https://doi.org/10.1007/s10853-020-04449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04449-1

Navigation