Skip to main content
Log in

Zr segregation in Ni–Zr alloy: implication on deformation mechanism during shear loading and bending creep

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary (GB) migration and grain growth in nanocrystalline metals are major obstructions to exploit these materials to their fullest potential, thus limiting their utility as advanced structural materials. Here, we investigate the effect of Zr segregation to a Ni GB on migration and subsequent strengthening during shear deformation and high-temperature bending creep. Specifically, using molecular dynamics simulation, we simulate deformation of a Ni bicrystal specimen having a symmetric ∑5 grain boundary with and without segregated Zr. It is found that GB segregation up to 0.4 at.% pins the CSL boundary resulting in increased shear strength. Similar behavior is also observed in the case of bending creep deformation where the creep resistance increases only up to 0.4 at.%. This study indicates that larger amounts of GB segregation cause destabilization of the local atomic structure and consequently affect the GB stiffness. Moreover, we investigate the effect of Zr segregation on the interaction between the GB and a dislocation. We find that the preexisting dislocation is absorbed in the GB region for both clean and segregated specimens; however, the absorption path of the dislocation is different due to the change in GB stiffness caused by the Zr segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Gleiter H (1991) Nanocrystalline materials. Advanced Structural and Functional Materials. Springer, Berlin, pp 1–37

    Google Scholar 

  2. Valiev R (2002) Materials science: nanomaterial advantage. Nature 419(6910):887–889

    Article  CAS  Google Scholar 

  3. Sasaki TT, Mukai T, Hono K (2007) A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr Mater 57(3):189–192

    Article  CAS  Google Scholar 

  4. Cai XC, Song J, Yang TT, Peng QM, Huang JY, Shen TD (2018) A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength. Mater Lett 210:121–123

    Article  CAS  Google Scholar 

  5. Krasnowski M, Kulik T (2010) Nanocrystalline Al–Fe intermetallics–light weight alloys with high hardness. Intermetallics 18(1):47–50

    Article  CAS  Google Scholar 

  6. Esquivel J, Murdoch HA, Darling KA, Gupta RK (2018) Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Mater Res Lett 6(1):79–83

    Article  CAS  Google Scholar 

  7. Driver JH (2004) Stability of nanostructured metals and alloys. Scr Mater 51(8):819–823

    Article  CAS  Google Scholar 

  8. Ma E (2003) Nanocrystalline materials: controlling plastic instability. Nat Mater 2(1):7–8

    Article  CAS  Google Scholar 

  9. Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42(5):1403–1414. https://doi.org/10.1007/s10853-006-0609-3

    Article  CAS  Google Scholar 

  10. Donaldson OK, Hattar K, Kaub T, Thompson GB, Trelewicz JR (2018) Solute stabilization of nanocrystalline tungsten against abnormal grain growth. J Mater Res 33(1):68–80

    Article  CAS  Google Scholar 

  11. Jiao ZB, Schuh CA (2018) Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries. Acta Mater 161:194–206

    Article  CAS  Google Scholar 

  12. Buban JP, Matsunaga K, Chen J, Shibata N, Ching WY, Yamamoto T, Ikuhara Y (2006) Grain boundary strengthening in alumina by rare earth impurities. Science 311(5758):212–215

    Article  CAS  Google Scholar 

  13. Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340(6135):957–960

    Article  CAS  Google Scholar 

  14. Zhang Y, Tucker GJ, Trelewicz JR (2017) Stress-assisted grain growth in nanocrystalline metals: grain boundary mediated mechanisms and stabilization through alloying. Acta Mater 131:39–47

    Article  CAS  Google Scholar 

  15. Kalidindi AR, Schuh CA (2017) Stability criteria for nanocrystalline alloys. Acta Mater 132:128–137

    Article  CAS  Google Scholar 

  16. Borovikov V, Mendelev MI, King AH (2017) Effects of solutes on dislocation nucleation from grain boundaries. Int J Plast 90:146–155

    Article  CAS  Google Scholar 

  17. Darling KA, Tschopp MA, VanLeeuwen BK, Atwater MA, Liu ZK (2014) Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput Mater Sci 84:255–266

    Article  CAS  Google Scholar 

  18. Yamaguchi M, Shiga M, Kaburaki H (2005) Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science 307(5708):393–397

    Article  CAS  Google Scholar 

  19. Luo J, Cheng H, Asl KM, Kiely CJ, Harmer MP (2011) The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333(6050):1730–1733

    Article  CAS  Google Scholar 

  20. Dillon SJ, Harmer MP, Luo J (2009) Grain boundary complexions in ceramics and metals: an overview. JOM 61(12):38–44

    Article  Google Scholar 

  21. Luo J (2009) Grain boundary complexions: the interplay of premelting, prewetting, and multilayer adsorption. Appl Phys Lett 95(7):071911

    Article  CAS  Google Scholar 

  22. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55(18):6208–6218

    Article  CAS  Google Scholar 

  23. Feng B, Yokoi T, Kumamoto A, Yoshiya M, Ikuhara Y, Shibata N (2016) Atomically ordered solute segregation behavior in an oxide grain boundary. Nat Commun 7:11079

    Article  CAS  Google Scholar 

  24. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326(5960):1686–1690

    Article  CAS  Google Scholar 

  25. Gorkaya T, Molodov DA, Gottstein G (2009) Stress-driven migration of symmetrical 〈1 0 0〉 tilt grain boundaries in Al bicrystals. Acta Mater 57(18):5396–5405

    Article  CAS  Google Scholar 

  26. Farkas D, Frøseth A, Van Swygenhoven H (2006) Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scr Mater 55(8):695–698

    Article  CAS  Google Scholar 

  27. Ovid’Ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56(12):2718–2727

    Article  CAS  Google Scholar 

  28. Pal S, Meraj M, Deng C (2017) Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Comput Mater Sci 126:382–392

    Article  CAS  Google Scholar 

  29. Zhao YS, Zhang J, Luo YS, Zhang B, Sha G, Li LF, Tang DZ, Feng Q (2019) Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy. Acta Mater 176:109–122

    Article  CAS  Google Scholar 

  30. Reddy KV, Pal S (2018) Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep. J Mol Model 24(4):87

    Article  CAS  Google Scholar 

  31. Reddy KV, Pal S (2018) Influence of Grain Boundary Complexion on Deformation Mechanism of High Temperature Bending Creep Process of Cu Bicrystal. Trans Indian Inst Met 71(7):1721–1734

    Article  CAS  Google Scholar 

  32. Reddy KV, Pal S (2018) Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study. J Mol Model 24(10):277

    Article  CAS  Google Scholar 

  33. Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50(2):413–419

    Article  CAS  Google Scholar 

  34. Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264(1–3):385–391

    Article  CAS  Google Scholar 

  35. Mathaudhu SN, Boyce BL (2015) Thermal stability: the next frontier for nanocrystalline materials. JOM 67(12):2785–2787

    Article  Google Scholar 

  36. Abdeljawad F, Foiles SM (2016) Interface-driven phenomena in solids: thermodynamics, kinetics and chemistry. JOM 68(6):1594–1595

    Article  CAS  Google Scholar 

  37. Kapoor M, Kaub T, Darling KA, Boyce BL, Thompson GB (2017) An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb. Acta Mater 126:564–575

    Article  CAS  Google Scholar 

  38. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  39. Xie X, Mishin Y (2002) Monte Carlo simulation of grain boundary segregation and decohesion in NiAl. Acta Mater 50(17):4303–4313

    Article  CAS  Google Scholar 

  40. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219

    Article  CAS  Google Scholar 

  41. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074

    Article  CAS  Google Scholar 

  42. Timoshenko SP, Gere JM (1972) Mechanics of Materials. VanNordstrand Reinhold Company, New York

    Google Scholar 

  43. Wilson SR, Mendelev MI (2015) Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation. Philos Mag 95(2):224–241

    Article  CAS  Google Scholar 

  44. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  45. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085

    Article  CAS  Google Scholar 

  46. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem 91(19):4950–4963

    Article  CAS  Google Scholar 

  47. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng 20(4):045021

    Article  CAS  Google Scholar 

  48. Stukowski A (2016) Visualization and analysis strategies for atomistic simulations. In: Multiscale materials modeling for nanomechanics. Springer, Cham, pp 317–336

  49. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  50. Schäfer J, Albe K (2012) Influence of solutes on the competition between mesoscopic grain boundary sliding and coupled grain boundary motion. Scr Mater 66(5):315–317

    Article  CAS  Google Scholar 

  51. Xiao C, Mirshams RA, Whang SH, Yin WM (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A 301(1):35–43

    Article  Google Scholar 

  52. Rajabzadeh A, Mompiou F, Legros M, Combe N (2013) Elementary mechanisms of shear-coupled grain boundary migration. Phys Rev Lett 110(26):265507

    Article  CAS  Google Scholar 

  53. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54(19):4953–4975

    Article  CAS  Google Scholar 

  54. Khater HA, Serra A, Pond RC, Hirth JP (2012) The disconnection mechanism of coupled migration and shear at grain boundaries. Acta Mater 60(5):2007–2020

    Article  CAS  Google Scholar 

  55. Zhu Q, Cao G, Wang J, Deng C, Li J, Zhang Z, Mao SX (2019) In situ atomistic observation of disconnection-mediated grain boundary migration. Nat Commun 10(1):156

    Article  CAS  Google Scholar 

  56. Huber L, Hadian R, Grabowski B, Neugebauer J (2018) A machine learning approach to model solute grain boundary segregation. NPJ Comput Mater 4(1):1–8

    Article  Google Scholar 

  57. O’Brien CJ, Foiles SM (2016) Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion. J Mater Sci 51(14):6607–6623. https://doi.org/10.1007/s10853-016-9944-1

    Article  CAS  Google Scholar 

  58. Reddy KV, Meraj M, Pal S (2017) Mechanistic study of bending creep behavior of bicrystal nanobeam. Comput Mater Sci 136:36–43

    Article  CAS  Google Scholar 

  59. Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater 52(13):3793–3805

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the Computer Centre of National Institute of Technology, Rourkela, for giving access to the high-performance computing facility (HPCF), which has been necessary for performing this molecular dynamics research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Vijay Reddy, K. & Spearot, D.E. Zr segregation in Ni–Zr alloy: implication on deformation mechanism during shear loading and bending creep. J Mater Sci 55, 6172–6186 (2020). https://doi.org/10.1007/s10853-020-04411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04411-1

Navigation