Skip to main content
Log in

A high growth rate process of ALD CeOx with amidinato-cerium [(N-iPr-AMD)3Ce] and O3 as precursors

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a novel approach was studied to fabricate ALD CeOx films with amidinato-cerium (N-iPr-AMD)3Ce and O3 as precursors. Ideal self-limiting deposition behaviors were found for the prepared films. The purity and surface morphology of the as-grown CeOx films, which possessed a high and constant growth rate of ~ 2.8 Å/cycle at 220–255 °C, were confirmed by XPS, XRD, SEM and AFM. The CeOx films could uniformly and conformally be deposited into deep and narrow trenches (high aspect ratio of 10:1), suggesting the good potential of this ALD process for complex 3D nanostructure-based applications. Furthermore, first-principles calculations based on density functional theory were performed to investigate possible interfacial reactions of this ALD process on the SiO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wang F, Wei M, Evans DG, Duan X (2016) CeO2-based heterogeneous catalysts toward catalytic conversion of CO2. J Mater Chem A 4:5773–5783

    CAS  Google Scholar 

  2. Sayle TXT, Cantoni M, Bhatta UM, Parker SC, Hall SR, Möbus G, Molinari M, Reid D, Seal S, Sayle DC (2012) Strain and architecture-tuned reactivity in ceria nanostructures; enhanced catalytic oxidation of CO to CO2. Chem Mater 24:1811–1821

    CAS  Google Scholar 

  3. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    CAS  Google Scholar 

  4. Kim WH, Kim MK, Maeng WJ, Gatineau J, Pallem V, Dussarrat C, Noori A, Thompson D, Chu S, Kim HJ (2011) Growth characteristics and film properties of cerium dioxide prepared by plasma-enhanced atomic layer deposition. J Electrochem Soc 158:G169–G172

    CAS  Google Scholar 

  5. Huang XB, Ni CS, Zhao GX, Irvine JTS (2015) Oxygen storage capacity and thermal stability of the CuMnO2-CeO2 composite system. J Mater Chem A 3:12958–12964

    CAS  Google Scholar 

  6. Younis A, Chu D, Mihail I, Li S (2013) Interface-engineered resistive switching: CeO2 nanocubes as high-performance memory cells. ACS Appl Mater Interfaces 5:9429–9434

    CAS  Google Scholar 

  7. Majumder D, Roy S (2018) Development of low-ppm CO sensors using pristine CeO2 nanospheres with high surface area. ACS Omega 3:4433–4440

    CAS  Google Scholar 

  8. Duan PQ, Huang TT, Xiong W, Shu L, Yang YL, Shao CY, Xu XR, Ma WM, Tang RK (2017) Protection of photosynthetic algae against ultraviolet radiation by one-step CeO2 shellization. Langmuir 33:2454–2459

    CAS  Google Scholar 

  9. King PJ, Werner M, Chalker PR, Jones AC, Aspinall HC, Basca J, Wrench JS, Black K, Davies HO, Heys PN (2011) Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition. Thin Solid Films 519:4192–4195

    CAS  Google Scholar 

  10. Yuan B, Long Y, Wu L, Liang K, Wen H, Luo S, Huo HF, Yang HL, Ma JT (2016) TiO2@h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity. Catal Sci Technol 6:6396–6405

    CAS  Google Scholar 

  11. Li Z, Sheng JY, Zhang YH, Li XJ, Xu YM (2015) Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2. Appl Catal B 166–167:313–319

    Google Scholar 

  12. Tian J, Sang YH, Zhao ZH, Zhou WJ, Wang DZ, Kang XL, Liu H, Wang JY, Chen SW, Cai HQ, Huang H (2013) Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 9:3864–3872

    CAS  Google Scholar 

  13. Lu AH, Schueth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    CAS  Google Scholar 

  14. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    CAS  Google Scholar 

  15. Shi G, Chen J, Wang LK, Wang DW, Yang JG, Li Y, Zhang LP, Ni CH, Chi LF (2016) Titanium oxide/silicon moth-eye structures with antireflection, p-n heterojunctions, and superhydrophilicity. Langmuir 32:10719–10724

    CAS  Google Scholar 

  16. Sun CW, Li H, Chen LQ (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5:8475–8505

    CAS  Google Scholar 

  17. Yao HB, Wang YJ, Jing Y, Luo GS (2018) Ultrafast, continuous and shape-controlled preparation of CeO2 nanostructures: nanorods and nanocubes in a microfluidic system. Ind Eng Chem Res 57:7525–7532

    CAS  Google Scholar 

  18. Sun CW, Li H, Zhang HR, Wang ZX, Chen LQ (2005) Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology 16:1454–1463

    CAS  Google Scholar 

  19. Natile MM, Boccaletti G, Glisenti A (2005) Properties and reactivity of nanostructured CeO2 powders: comparison among two synthesis procedures. Chem Mater 17:6272–6286

    CAS  Google Scholar 

  20. Zhou XD, Huebner W, Anderson HU (2003) Processing of nanometer-scale CeO2 particles. Chem Mater 15:378–382

    CAS  Google Scholar 

  21. Li SL, Wang L, Xiong YM, Bae G, Lee C (2013) Amorphization of ZrO2 + CeO2 powders through mechanical milling for the use of kinetic spray. J Mater Eng Perform 22:3717–3722

    CAS  Google Scholar 

  22. Pan M, Meng GY, Xin HW, Chen CS, Peng DK, Lin YS (1998) Pure and doped CeO2 thin films prepared by MOCVD process. Thin Solid Films 324:89–91

    CAS  Google Scholar 

  23. Guillou N, Nistor LC, Fuess H, Hahn H (1997) Microstructural studies of nanocrystalline CeO2 produced by gas condensation. Nanostruct Mater 8:545–557

    CAS  Google Scholar 

  24. Barreca D, Gasparotto A, Tondello E, Sada C, Polizzi S, Benedetti A (2003) Nucleation and growth of nanophasic CeO2 thin films by plasma-enhanced CVD. Chem Vap Depos 9:199–206

    CAS  Google Scholar 

  25. Sarkar S, Patel RL, Liang XH, Park J (2017) Unveiling the role of CeO2 atomic layer deposition coatings on LiMn2O4 cathode materials: an experimental and theoretical study. ACS Appl Mater Interfaces 9:30599–30607

    CAS  Google Scholar 

  26. Wang XF, Jin Y, Liang XH (2017) Significant photocatalytic performance enhancement of TiO2 by CeO2 atomic layer deposition. Nanotechnology 28:505709/1–505709/8

    CAS  Google Scholar 

  27. Biyikli N, Haider A (2017) Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors. Semicond Sci Technol 32:093002/1–093002/52

    CAS  Google Scholar 

  28. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246

    CAS  Google Scholar 

  29. Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24:1017–1032

    CAS  Google Scholar 

  30. George SM (2009) Atomic layer deposition: an overview. Chem Rev 110:111–131

    Google Scholar 

  31. Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys 113:021301/1–021301/101

    CAS  Google Scholar 

  32. O’Neill BJ, Jackson DH, Lee J, Canlas C, Stair PC, Marshall CL, Elam JW, Kuech TF, Dumesic JA, Huber GW (2015) Catalyst design with atomic layer deposition. Acs Catal 5:1804–1825

    Google Scholar 

  33. Devi A (2013) ‘Old Chemistries’ for new applications: perspectives for development of precursors for MOCVD and ALD applications. Chem Rev 257:3332–3384

    CAS  Google Scholar 

  34. Coll M, Gazquez J, Palau A, Varela M, Obradors X, Puig T (2012) Low temperature epitaxial oxide ultrathin films and nanostructures by atomic layer deposition. Chem Mater 24:3732–3737

    CAS  Google Scholar 

  35. Päiväsaari J, Putkonen M, Niinistö L (2002) Cerium dioxide buffer layers at low temperature by atomic layer deposition. J Mater Chem 12:1828–1832

    Google Scholar 

  36. Neoh KC, Han GD, Kim M, Kim JW, Choi HJ, Park SW, Shim JH (2016) Nanoporous silver cathode surface treated by atomic layer deposition of CeOx for low-temperature solid oxide fuel cells. Nanotechnology 27:185403/1–185403/9

    CAS  Google Scholar 

  37. Kouda M, Ozawa K, Kakushima K, Ahmet P, Iwai H, Urabe Y, Yasuda T (2011) Preparation and electrical characterization of CeO2 films for gate dielectrics application: comparative study of chemical vapor deposition and atomic layer deposition processes. Jpn J Appl Phys 50:10PA06/1–10PA06/4

    CAS  Google Scholar 

  38. Maeng WJ, Oh IK, Kim WH, Kim MK, Lee CW, Lansalot-Matras C, Thompson D, Chu S, Kim H (2014) Atomic layer deposition of CeO2/HfO2 gate dielectrics on Ge substrate. Appl Surf Sci 321:214–218

    CAS  Google Scholar 

  39. King PJ, Sedghi N, Hall S, Mitrovic IZ, Chalker PR, Werner M, Hindley S (2014) Physical and electrical characterization of Ce-HfO2 thin films deposited by thermal atomic layer deposition. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 32:03D103/1–03D103/5

    CAS  Google Scholar 

  40. Wrench JS, Black K, Aspinall HC, Jones AC, Bacsa J, Chalker PR, King PJ, Werner M, Davies HO, Heys PN (2009) MOCVD and ALD of CeO2 thin films using a novel monomeric CeIV alkoxide precursor. Chem Vap Depos 15:259–261

    CAS  Google Scholar 

  41. Kim WH, Kim MK, Oh IK, Maeng WJ, Cheon T, Kim SH, Noori A, Thompson D, Chu S, Kim H (2014) Significant enhancement of dielectric constant through doping of CeO2 into HfO2 by atomic layer deposition. J Am Ceram Soc 97:1164–1169

    CAS  Google Scholar 

  42. Golalikhani M, James T, Buskirk PV, Noh W, Lee J, Wang Z, Roeder JF (2018) Atomic layer deposition of CeO2 using a heteroleptic cyclopentadienyl-amidinate precursor. J Vac Sci Technol A 36:051502/1–051502/7

    CAS  Google Scholar 

  43. Knisley TJ, Kalutarage LC, Winter CH (2013) Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films. Coordin Chem Rev 257:3222–3231

    CAS  Google Scholar 

  44. Barry ST (2013) Amidinates, guanidinates and iminopyrrolidinates: understanding precursor thermolysis to design a better ligand. Coordin Chem Rev 257:3192–3201

    CAS  Google Scholar 

  45. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754

    CAS  Google Scholar 

  46. Du LY, Yu SS, Liu XF, Ding YQ (2019) An efficient atomic layer deposition process of MnOx films using bis(N, N’-di-tert-butylacetamidinato)manganese-(II) and H2O as reactants. Appl Surf Sci 486:460–465

    CAS  Google Scholar 

  47. Du LY, Huang W, Zhang YX, Liu XF, Ding YQ (2019) The first atomic layer deposition process for FexN films. Chem Commun 55:1943–1946

    Google Scholar 

  48. Brazeau AL, Barry ST (2008) Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor. Chem Mater 20:7287–7291

    CAS  Google Scholar 

  49. Kim SB, Sinsermsuksakul P, Hock AS, Pike RD, Gordon RG (2014) Synthesis of N-heterocyclic stannylene (Sn(II)) and germylene (Ge(II)) and a Sn(II) amidinate and their application as precursors for atomic layer deposition. Chem Mater 26:3065–3073

    CAS  Google Scholar 

  50. Pallem VR, Dussarrat C, Noh W (2014) Preparation of cerium-containing precursors and deposition of cerium-containing films. U.S. Patent 0113456 A1

  51. Dröse P, Blaurock S, Hrib CG, Hilfert L, Edelmann FT (2011) Structural investigation of homoleptic lanthanide(III) tris(pivalamidinates), [tBuC(NiPr)2]3Ln (Ln = Ce, Eu, Tb). Z Anorg Allg Chem 637:186–189

    Google Scholar 

  52. Wright SF, Dollimore D, Dunn JG, Alexander K (2004) Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim Acta 421:25–30

    CAS  Google Scholar 

  53. Yang WL, Zhou ZX, Yang B, Jiang YY, Pei YB, Sun HG, Wang Y (2012) Effect of oxygen atmosphere on the structure and refractive index dispersive behavior of KTa0.5Nb0.5O3 thin films prepared by PLD on Si(0 0 1) substrates. Appl Surf Sci 258:3986–3990

    CAS  Google Scholar 

  54. Ivanova TV, Toivonen J, Maydannik PS, Kääriäinen T, Sillanpää M, Homola T, Cameron DC (2016) Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. J Vac Sci Technol A 34:031506/1–031506/10

    CAS  Google Scholar 

  55. Vangelista S, Piagge R, Ek S, Sarnet T, Ghidini G, Martella C, Lamperti A (2017) Structural, chemical and optical properties of cerium dioxide film prepared by atomic layer deposition on TiN and Si substrates. Thin Solid Films 636:78–84

    CAS  Google Scholar 

  56. Jiang HL, Li ML, Liu J, Li XQ, Tian L, Chen PH (2018) Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr(VI) under visible light. Ceram Int 44:2709–2717

    CAS  Google Scholar 

  57. Chen FJ, Ho PL, Ran R, Chen WM, Si ZC, Wu XD, Weng D, Huang ZG, Lee C (2017) Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J Alloys Compd 714:560–566

    CAS  Google Scholar 

  58. Liu H, Wang MY, Wang Y, Liang YG, Cao WR, Su Y (2011) Ionic liquid-templated synthesis of mesoporous CeO2-TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photochem Photobiol A 223:157–164

    CAS  Google Scholar 

  59. Pollard KD, Jenkins HA, Puddephatt RJ (2000) Chemical vapor deposition of cerium oxide using the precursors [Ce(hfac)3(glyme)]. Chem Mater 12:701–710

    CAS  Google Scholar 

  60. Gupta A, Sakthivel TS, Neal CJ, Koul S, Singh S, Kushima A, Seal S (2019) Antioxidant properties of ALD grown nanoceria films with tunable valency. Biomater Sci 7:3051–3061

    CAS  Google Scholar 

  61. Krawczyk M, Holdynski M, Lisowski W, Sobczak JW, Jablonski A (2015) Electron inelastic mean free paths in cerium dioxide. Appl Surf Sci 341:196–202

    CAS  Google Scholar 

  62. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    CAS  Google Scholar 

  63. Kresse G, Hafner J (1993) Ab initio molecular dynamics of liquid metals. Phys Rev B 47:558/1–558/4

    Google Scholar 

  64. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    CAS  Google Scholar 

  65. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  66. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  67. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  68. Puurunen RL (2005) Correlation between the growth-per-cycle and the surface hydroxyl group concentration in the atomic layer deposition of aluminum oxide from trimethylaluminum and water. Appl Surf Sci 245:6–10

    CAS  Google Scholar 

  69. Knapas K, Ritala M (2011) In situ reaction mechanism studies on atomic layer deposition of Ir and IrO2 from Ir(acac)3. Chem Mater 23:2766–2771

    CAS  Google Scholar 

  70. Knapas K, Ritala M (2008) SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. Chem Mater 20:5698–5705

    CAS  Google Scholar 

  71. Sandupatla AS, Alexopoulos K, Reyniers MF, Marin GB (2015) DFT investigation into alumina ALD growth inhibition on hydroxylated amorphous silica surface. J Phys Chem C 119:18380–18388

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support for this work from the Natural Science Foundation of Jiangsu Province (No. BK20190602) and National Natural Science Foundation of China (21802054) and the Natural Science Foundation of Jiangsu Province (BK20180587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Ding.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 18768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Wang, K., Zhong, Y. et al. A high growth rate process of ALD CeOx with amidinato-cerium [(N-iPr-AMD)3Ce] and O3 as precursors. J Mater Sci 55, 5378–5389 (2020). https://doi.org/10.1007/s10853-020-04380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04380-5

Navigation