Skip to main content

Advertisement

Log in

Multilayering process of electrodeposited nanocrystalline iron–nickel alloys for further strengthening

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effect of multilayering on the tensile property in nanocrystalline (nc) iron–nickel (Fe–Ni) alloys was studied to obtain a clue to further strengthening of nc materials. Multilayering electrodeposition process of nc Fe–Ni alloys with different Ni contents was investigated using an electrolyte which mainly composed of nickel sulfamate and iron chloride. The Ni content in the obtained nc Fe–Ni alloys increased with increasing current density of the electrodeposition. The multilayered structure with 3–11 layers composed of nc Fe–34 mass% Ni alloy (Invar alloy) and nc Fe–46 mass% Ni alloy (non-Invar alloy) were obtained alternatively applying two different current densities at predetermined time intervals. The average thickness of individual Invar alloy layer in the multilayered specimens with 3–11 layers was changed from 19.2 to 6.0 μm. The tensile strength in the multilayered nc Fe–Ni alloy specimens was increased ranging from 1.47 to 2.24 GPa with decreasing thickness of Invar alloy layers and increasing number of multilayer interface. The possible mechanism of the strengthening in the multilayered nc Fe–Ni alloy specimens was discussed based on the results of the hardness–distance profile near the interface between the Invar alloy and non–Invar alloy layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Baghbanan M, Erb U, Palumbo G (2006) Towards the application of nanocrystalline metals in MEMS. Phys Stat Sol (a) 203:1259–1264

    CAS  Google Scholar 

  2. Spearing SM (2000) Materials issues in micro electromechanical systems (MEMS). Acta Mater 48:179–196

    CAS  Google Scholar 

  3. Nagoshi T, Chang TFM, Tatsuo S, Sone M (2013) Mechanical properties of nickel fabricated by electroplating with supercritical CO2 emulsion evaluated by micro-compression test using non-tapered micro-sized pillar. Microelectron Eng 110:270–273

    CAS  Google Scholar 

  4. Gleiter H (1989) Nanocrystalline materials. Progr Mater Sci 33:223–315

    CAS  Google Scholar 

  5. Qin XY, Cheng SH, Lee JS (2003) Tensile behavior of nanocrystalline Ni–Fe alloy. Mater Sci Eng A 363:62–66

    Google Scholar 

  6. Erb U (1995) Electrodeposited nanocrystals: synthesis, properties and industrial applications. Nanostruct Mater 6:533–538

    Google Scholar 

  7. Becker EW, Ehrfeld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of microstructures with extreme structural heights by synchrotron radiation lithography, galvanoforming and plastic forming (LIGA process). Microelectron Eng 4:35–56

    CAS  Google Scholar 

  8. Szpunar B, Lewis LJ, Swainson I, Erb U (1999) Thermal expansion and hydrogen diffusion in nanocrystalline nickel. Phys Rev B 60:10107–10113

    CAS  Google Scholar 

  9. Jeong D, Gonzalez F, Palumbo G, Aust K, Erb U (2001) The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Mater 44:493–499

    CAS  Google Scholar 

  10. Koch CC (2007) Nanostructured materials: processing, properties and applications, 2nd edn. William Andrew, New York

    Google Scholar 

  11. Cheung C, Djuanda F, Erb U, Palumbo G (1995) Electrodeposition of nanocrystalline Ni–Fe alloys. Nanostruct Mater 5:513–523

    CAS  Google Scholar 

  12. Li H, Ebrahimi F, Choo H, Liaw PK (2016) Grain size dependence of tensile behavior in nanocrystalline Ni–Fe alloys. J Mater Sci 41:7636–7642. https://doi.org/10.1007/s10853-006-0856-3

    Article  CAS  Google Scholar 

  13. Rupert T, Trelewicz J, Schuh C (2012) Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. J Mater Res 27:1285–1294

    CAS  Google Scholar 

  14. Dai PQ, Zhang C, Wen JC, Rao HC, Wang QT (2016) Tensile properties of electrodeposited nanocrystalline Ni–Cu alloys. J Mater Eng Perform 25:594–600

    CAS  Google Scholar 

  15. Splinter SJ, Rofagha R, McIntyre NS, Erb U (1996) XPS characterization of the corrosion films formed on nanocrystalline Ni–P alloys in sulphuric acid. Surf Interface Anal 24:181–186

    CAS  Google Scholar 

  16. Kobayashi S, Tsurekawa S, Watanabe T (2016) Grain growth and mechanical properties of electrodeposited nanocrystalline nickel–4.4mass% phosphorus alloy. Mater Sci Eng A 358:76–83

    Google Scholar 

  17. Palumbo G, Erb U, Aust KT (1990) Triple line disclination effects on the mechanical behaviour of materials. Scripta Metall Mater 24:2347–2350

    CAS  Google Scholar 

  18. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563

    Google Scholar 

  19. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation–mechanism map for nanocrystalline metals by molecular–dynamics simulation. Nat Mater 3:43–47

    CAS  Google Scholar 

  20. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the Hall–Petch relationship in nanocrystalline materials. Scripta Metall 23:1679–1684

    CAS  Google Scholar 

  21. Hemker KJ (2004) Understanding how nanocrystalline metals deform. Science 304:221–223

    CAS  Google Scholar 

  22. Ma E (2004) Watching the nanograins roll. Science 305:623–624

    CAS  Google Scholar 

  23. Swygenhoven HV, Weertman JR (2006) Deformation in nanocrystalline metals. Mater Today 9:24–31

    Google Scholar 

  24. Blum W (1921) The structure and properties of alternately electrodeposited metals. Trans Am Electrochem Soc 40:307–320

    Google Scholar 

  25. Goldman LM, Blanpain B, Spaepen F (1986) Short wavelength compositionally modulated Ni/Ni–P films prepared by electrodeposition. J Appl Phys 60:1374–1376

    CAS  Google Scholar 

  26. Barral G, Maximovitch S (1990) Preparation of composition-modulated films by alternate electrodeposition from different electrolytes. J Phys Colloques 51:291–297

    Google Scholar 

  27. Tench DM, White JT (1991) Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J Electrochem Soc 138:3757–3758

    CAS  Google Scholar 

  28. Menezes S, Anderso DP (1990) Wavelength–property correlation in electrodeposited ultrastructured Cu–Ni multilayers. J Electrochem Soc 137:440–444

    CAS  Google Scholar 

  29. Cammarata RC (1994) Mechanical properties of nanocomposite thin films. Thin Solid Films 240:82–87

    CAS  Google Scholar 

  30. Kaneko Y, Mizuta Y, Nishijima Y, Hashimoto S (2005) Vickers hardness and deformation of Ni/Cu nano-multilayers electrodeposited on copper substrates. J Mater Sci 40:3231–3236. https://doi.org/10.1007/s10853-005-2690-4

    Article  CAS  Google Scholar 

  31. Kurmanaeva L, McCrea J, Jian J, Fiebig J, Wang H, Mukherjee AK, Lavernia EJ (2016) Influence of layer thickness on mechanical properties of multilayered Ni–Fe samples processed by electrodeposition. Mater Des 90:389–395

    CAS  Google Scholar 

  32. Grimmett DL, Schwartz M, Nobe K (1993) A comparison of DC and Pulsed Fe–Ni alloy deposits. J Electrochem Soc 140:973–978

    CAS  Google Scholar 

  33. Saito H (1978) Physics and applications of invar alloys. Maruzen, Tokyo

    Google Scholar 

  34. Su C, Zhao L, Tian L, Wen B, Xiang M, Bai W, Guo J (2019) Rapid electrodeposition of Fe–Ni alloy foils from chloride baths containing trivalent iron ions. Coatings 9:56. https://doi.org/10.3390/coatings9010056

    Article  CAS  Google Scholar 

  35. Li H, Ebrahimi F (2006) Tensile behavior of a nanocrystalline Ni–Fe alloy. Acta Mater 54:2877–2886

    CAS  Google Scholar 

  36. Watanabe T, Kitamura S, Karashima S (1980) Grain boundary hardening and segregation in alpha Iron–Tin alloy. Acta Metall 28:455–463

    CAS  Google Scholar 

  37. Chou YT, Cai BC, Romig AD Jr, Lin LS (1983) Correlation between grain-boundary hardening and grain-boundary energy in niobium bicrystals. Philos Mag A47:363–368

    Google Scholar 

  38. Westbrook JH, Aust KT (1963) Solute hardening at interfaces in high-purity lead—I grain and twin boundaries Durcissement de solution aux interfaces. Acta Met 11:1151–1163

    Google Scholar 

  39. Aust KT, Peat AJ, Westbrook JH (1966) Quench-hardening gradients near vacancy sinks in crystals of zone refined lead. Acta Met 14:1469–1478

    CAS  Google Scholar 

  40. Aust KT, Hanneman RE, Niessen P, Westbrook JH (1968) Solute induced hardening near grain boundaries in zone refined metals. Acta Metall 16:291–302

    CAS  Google Scholar 

  41. Floreen S, Westbrook H (1969) Grain boundary segregation and the grain size dependence of strength of nickel–sulfur alloys. Acta Metall 17:1175–1181

    CAS  Google Scholar 

  42. Braunovic M, Haworth CW (1974) On the phenomenon of grain-boundary hardening in iron. J Mater Sci 9:809–820. https://doi.org/10.1007/BF00761801

    Article  CAS  Google Scholar 

  43. Kobayashi S, Tsurekawa S, Watanabe T (2005) Grain boundary hardening and triple junction hardening in polycrystalline molybdenum. Acta Mater 53:1051–1057

    CAS  Google Scholar 

  44. Kobayashi S, Tsurekawa S, Watanabe T (2006) Structure-dependent triple junction hardening and intergranular fracture in molybdenum. Philos Mag 86:5419–5429

    CAS  Google Scholar 

  45. Misra A, Hirth JP, Hoagland RG (2015) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Google Scholar 

  46. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scripta Mater 39:555–560

    CAS  Google Scholar 

  47. Kurmanaeva L, Bahmanpour H, Holland T et al (2014) Room temperature mechanical behaviour of a Ni–Fe multilayered material with modulated grain size distribution. Philos Mag 94:3549–3559

    CAS  Google Scholar 

  48. Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    CAS  Google Scholar 

  49. Ivanisenko Y, Tabachnikova ED, Psaruk IA et al (2014) Variation of the deformation mechanisms in a nanocrystalline Pd–10 at.% Au alloy at room and cryogenic temperatures. Int J Plast 60:40–57

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Y. Ando (Ashikaga University, Japan) for provision XRD measurements and Professor S. Tsurekawa (Kumamoto University, Japan) for the provision of FE-SEM/EBSD/OIM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Kobayashi, S. Multilayering process of electrodeposited nanocrystalline iron–nickel alloys for further strengthening. J Mater Sci 55, 5627–5638 (2020). https://doi.org/10.1007/s10853-020-04378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04378-z

Navigation