Skip to main content
Log in

TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The domain structure is comprehensively investigated in the prototype antiferroelectric perovskite PbHfO3 using transmission electron microscopy. The antiparallel Pb-displacements, and the one {110}c-atomic-plane and four {110}c-atomic-plane (subscript c denotes the pseudo-cubic notation) polar translational boundaries within antiferroelectric domains are directly revealed. At the micrometer level, various antiferroelectric domain structures are observed and analyzed in PbHfO3, including the new “cloverleaf pattern” domain morphology. In another prototype antiferroelectric perovskite PbZrO3, antiferroelectric domains appear to favor the “lamellar pattern.” The combination of these two patterns makes even more complicated domain structures in PbZrO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chauhan A, Patel S, Vaish R, Bowen CR (2015) Anti-ferroelectric ceramics for high energy density capacitors. Materials 8:8009–8031

    Article  Google Scholar 

  2. Zhao L, Liu Q, Gao J, Zhang S, Li J (2017) Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 29:1701824

    Article  Google Scholar 

  3. Hao X, Zhai J, Yao X (2009) Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. J Am Ceram Soc 92:1133–1135

    Article  CAS  Google Scholar 

  4. Wei J, Yang T, Wang H (2019) Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics. J Euro Ceram Soc 39:624–630

    Article  CAS  Google Scholar 

  5. Wang H, Liu Y, Yang T, Zhang S (2018) Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv Funct Mater 29:1807321

    Article  Google Scholar 

  6. Hao X, Zhai J, Kong LB, Xu Z (2014) A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 63:1–57

    Article  CAS  Google Scholar 

  7. Shirane G, Pepinsky R (1953) Phase transitions in antiferroelectric PbHfO3. Phys Rev 91:812–815

    Article  CAS  Google Scholar 

  8. Samara GA (1970) Pressure and temperature dependence of the dielectric properties and phase transitions of the antiferroelectric perovskites: PbZrO3 and PbHfO3. Phys Rev B 1:3777

    Article  Google Scholar 

  9. Corker DL, Glazer AM, Kaminsky W, Whatmore RW, Dec J, Roleder K (1998) Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3. Acta Crystallogr B 54:18

    Article  Google Scholar 

  10. Huband S, Glazer AM, Roleder K, Majchrowski A, Thomas PA (2017) Crystallographic and optical study of PbHfO3 crystals. J Appl Crystallogr 50:378

    Article  CAS  Google Scholar 

  11. Jankowska-Sumara I, Miga S, Roleder K (2001) Electrostriction versus low frequency dielectric dispersion in PbZrO3 and PbHfO3 single crystals. J Mater Sci 36:2753–2757. https://doi.org/10.1023/A:1017921131368

    Article  CAS  Google Scholar 

  12. Fan Z, Xue F, Tutuncu G, Chen LQ, Tan X (2019) Interaction dynamics between ferroelectric and antiferroelectric domains in a PbZrO3-based ceramic. Phys Rev Appl 11:064050

    Article  CAS  Google Scholar 

  13. Peláiz-Barranco A, Guerra JDS, Garcia-Zaldivar O, Calderón-Piñar F, Araújo EB, Hall DA, Mendoza ME, Eiras JA (2008) Effects of lanthanum modification on dielectric properties of Pb(Zr0.90Ti0.10)O3 ceramics: enhanced antiferroelectric stability. J Mater Sci 43:6087–6093. https://doi.org/10.1007/s10853-008-2951-0

    Article  CAS  Google Scholar 

  14. Viehland D, Forest D, Xu Z, Li JF (2015) Incommensurately modulated polar structures in antiferroelectric Sn-modified lead zirconate titanate: the modulated structure and its influences on electrically induced polarizations and strains. J Am Ceram Soc 78:2101–2112

    Article  Google Scholar 

  15. Guo H, Voas BK, Zhang S, Zhou C, Ren X, Beckman SP, Tan X (2014) Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3. Phys Rev B 90:014103

    Article  Google Scholar 

  16. Ricote J, Whatmore RW, Barber DJ (2000) Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT ceramics. J Phys Condens Matter 12:323–337

    Article  CAS  Google Scholar 

  17. Woodward DI, Knudsen J, Reaney IM (2005) Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Phys Rev B 72:104110

    Article  Google Scholar 

  18. Tanaka M, Saito R, Tsuzuki K (1982) Electron microscopic studies on domain structure of PbZrO3. Jpn J Appl Phys 21:291–298

    Article  CAS  Google Scholar 

  19. Shen GJ, Shen K (1999) Electron microscope study of domains in PbZrO3. J Mater Sci 34:5153–5156. https://doi.org/10.1023/A:1004729621367

    Article  CAS  Google Scholar 

  20. Gao L, Guo H, Zhang S, Randall CA (2016) A perovskite lead-free antiferroelectric xCaHfO3-(1-x)NaNbO3 with induced double hysteresis loops at room temperature. J Appl Phys 120:204102

    Article  Google Scholar 

  21. Shimizu H, Guo H, Reyes-Lillo SE, Rabe KM, Randall CA (2015) Lead-free antiferroelectric: xCaZrO3-(1−x)NaNbO3 system (0≤ x≤ 0.10). Dalton Trans 44:10763–10772

    Article  CAS  Google Scholar 

  22. Yamazoe S, Sakurai H, Saito T, Wada T (2010) Observation of domain structure in 001 orientated NaNbO3 films deposited on (001) SrTiO3 substrates by laser beam scanning microscopy. Appl Phys Lett 96:092901

    Article  Google Scholar 

  23. Madigout V, Baudour JL, Bouree F, Favotto C, Roubin M, Nihoul G (1999) Crystallographic structure of lead hafnate (PbHfO3) from neutron powder diffraction and electron microscopy. Philos Mag A 79:847–858

    Article  Google Scholar 

  24. Xu Z, Dai X, Viehland D, Payne DA (1995) Ferroelectric domains and incommensuration in the intermediate phase region of lead zirconate. J Am Ceram Soc 78:2220–2224

    Article  CAS  Google Scholar 

  25. Tanaka M, Saito R, Tsuzuki K (1982) Determinations of space group and oxygen coordinates in the antiferroelectric phase of lead zirconate by conventional and convergent-beam electron diffraction. J Phys Soc Jpn 51:2635–2640

    Article  CAS  Google Scholar 

  26. Ma T, Fan Z, Xu B, Kim TH, Ballaiche L, Kramer MJ, Tan X, Zhou L (2019) Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys Rev Lett 123:217602

    Article  Google Scholar 

  27. Wei XK, Chia CL, Roleder K, Setter N (2015) Polarity of translation boundaries in antiferroelectric PbZrO3. Mater Res Bull 62:101–105

    Article  CAS  Google Scholar 

  28. Wei XK, Vaideeswaran K, Sandu CS, Chia CL, Setter N (2015) Preferential creation of polar translational boundaries by interface engineering in antiferroelectric PbZrO3 thin films. Adv Mater Interfaces 2:1500349

    Article  Google Scholar 

  29. Ma T, Fan Z, Tan X, Zhou L (2019) Atomically resolved domain boundary structure in lead zirconate-based antiferroelectrics. Appl Phys Lett 15:122902

    Article  Google Scholar 

  30. Zhu Y, Ophus C, Ciston J, Wang H (2013) Interface lattice displacement measurement to 1pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Mater 61:5646–5663

    Article  CAS  Google Scholar 

  31. Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong SW (2010) Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater 9:253–258

    Article  CAS  Google Scholar 

  32. Shih WY, Shih WH, Aksay IA (1994) Size dependence of the ferroelectric transition of small BaTiO3 particles: effect of depolarization. Phys Rev B 50:15575–15585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Science Foundation (NSF), through Grant No. DMR-1700014, supported the microscopic work (ZMF, TM, LZ, and XT). The ceramic processing (JW and TQY) is supported by National Natural Science Foundation of China (No. 51472181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Ma, T., Wei, J. et al. TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites. J Mater Sci 55, 4953–4961 (2020). https://doi.org/10.1007/s10853-020-04361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04361-8

Navigation