Skip to main content
Log in

Changes in microcapsules under heating: the effect of particle size on thermal stability and breakability

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effect of particle size on the thermal stability and bursting phenomenon of the microcapsules with a melamine resin shell was studied. The heat-induced change process and mechanism of the prepared microcapsules were derived. Firstly, the microcapsules with different particle sizes were prepared and characterized via encapsulation efficiency measurements, optical microscopy, and scanning electron microscopy. The thermogravimetric analysis curves of the samples were calculated, analyzed, and compared with the samples’ particle size and distribution, and the changes and differences in the microcapsules under heating environment were macroscopically studied. Furthermore, thermo-microscopic image analysis of the samples was conducted using a laboratory-combined instrument system, and their dynamic morphology in a temperature-increasing environment was microscopically investigated. On the basis of these data, it was found that the thermal bursting phenomenon occurred when the microcapsule particle size was larger than the “critical dimension.” And as the particle sizes decreased, their heat rupture resistance was improved, and the trend of change was described by an exponential function (y = 133.64 + 94.76 × 0.85x). When the microcapsule size was smaller than the critical dimension, the thermal bursting phenomenon disappeared and the thermal stability was depended on the degradation temperature of the MMF shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ghayempour S, Montazer M (2016) Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencapsul 33(6):497–510. https://doi.org/10.1080/02652048.2016.1216187

    Article  CAS  Google Scholar 

  2. Nguon O, Lagugné-Labarthet F, Brandys FA, Li J, Gillies ER (2017) Microencapsulation by in situ polymerization of amino resins. Polym Rev 58(2):326–375. https://doi.org/10.1080/15583724.2017.1364765

    Article  CAS  Google Scholar 

  3. Rodrigues SN, Martins IM, Fernandes IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149(1–3):463–472. https://doi.org/10.1016/j.cej.2009.02.021

    Article  CAS  Google Scholar 

  4. Son K, Yoo DI, Shin Y (2014) Fixation of vitamin E microcapsules on dyed cotton fabrics. Chem Eng J 239:284–289. https://doi.org/10.1016/j.cej.2013.11.034

    Article  CAS  Google Scholar 

  5. Pan X, York D, Preece JA, Zhang Z (2012) Size and strength distributions of melamine-formaldehyde microcapsules prepared by membrane emulsification. Powder Technol 227:43–50. https://doi.org/10.1016/j.powtec.2011.12.041

    Article  CAS  Google Scholar 

  6. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005

    Article  CAS  Google Scholar 

  7. Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta 498(1–2):16–21. https://doi.org/10.1016/j.tca.2009.09.005

    Article  CAS  Google Scholar 

  8. Wan X, Guo B, Xu J (2017) A facile hydrothermal preparation for phase change materials microcapsules with a pliable self-recovering shell and study on its thermal energy storage properties. Powder Technol 312:144–151. https://doi.org/10.1016/j.powtec.2017.02.035

    Article  CAS  Google Scholar 

  9. Huo X, Li W, Wang Y, Han N, Wang J, Wang N, Zhang X (2018) Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr Polym 200:602–610. https://doi.org/10.1016/j.carbpol.2018.08.003

    Article  CAS  Google Scholar 

  10. Geng X, Li W, Yin Q, Wang Y, Han N, Wang N, Bian J, Wang J, Zhang X (2018) Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy 159:857–869. https://doi.org/10.1016/j.energy.2018.06.218

    Article  CAS  Google Scholar 

  11. Zhao Y, Zhang W, Liao L-p, Wang S-j, Li W-j (2012) Self-healing coatings containing microcapsule. Appl Surf Sci 258(6):1915–1918. https://doi.org/10.1016/j.apsusc.2011.06.154

    Article  CAS  Google Scholar 

  12. Tian R, Fu X, Zheng Y, Liang X, Wang Q, Ling Y, Hou B (2012) The preparation and characterization of double-layer microcapsules used for the self-healing of resin matrix composites. J Mater Chem 22(48):25437–25446. https://doi.org/10.1039/c2jm34195f

    Article  CAS  Google Scholar 

  13. Zhu DY, Rong MZ, Zhang MQ (2015) Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog Polym Sci 49–50:175–220. https://doi.org/10.1016/j.progpolymsci.2015.07.002

    Article  CAS  Google Scholar 

  14. Su J-F, Schlangen E, Qiu J (2013) Design and construction of microcapsules containing rejuvenator for asphalt. Powder Technol 235:563–571. https://doi.org/10.1016/j.powtec.2012.11.013

    Article  CAS  Google Scholar 

  15. Sun D, Li B, Ye F, Zhu X, Lu T, Tian Y (2018) Fatigue behavior of microcapsule-induced self-healing asphalt concrete. J Clean Prod 188:466–476. https://doi.org/10.1016/j.jclepro.2018.03.281

    Article  CAS  Google Scholar 

  16. Ma Y, Li Z, Wang H, Li H (2019) Synthesis and optimization of polyurethane microcapsules containing [BMIm]PF6 ionic liquid lubricant. J Colloid Interface Sci 534:469–479. https://doi.org/10.1016/j.jcis.2018.09.059

    Article  CAS  Google Scholar 

  17. Imani A, Zhang H, Owais M, Zhao J, Chu P, Yang J, Zhang Z (2018) Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules. Compos A 107:607–615. https://doi.org/10.1016/j.compositesa.2018.01.033

    Article  CAS  Google Scholar 

  18. Kooiman K, Bohmer MR, Emmer M, Vos HJ, Chlon C, Shi WT, Hall CS, de Winter SH, Schroen K, Versluis M, de Jong N, van Wamel A (2009) Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J Control Release 133(2):109–118. https://doi.org/10.1016/j.jconrel.2008.09.085

    Article  CAS  Google Scholar 

  19. Feng F, Li R, Zhang Q, Wang Y, Yang X, Duan H, Yang X (2014) Preparation of reduction-triggered degradable microcapsules for intracellular delivery of anti-cancer drug and gene. Polymer 55(1):110–118. https://doi.org/10.1016/j.polymer.2013.11.035

    Article  CAS  Google Scholar 

  20. Yuan L, Chen F, Gu A, Liang G, Lin C, Huang S, Nutt S, Chen G, Gao Y (2013) Synthesis of poly(urea-formaldehyde) encapsulated dibutyltin dilaurate through the self-catalysis of core materials. Polym Bull 71(1):261–273. https://doi.org/10.1007/s00289-013-1059-0

    Article  CAS  Google Scholar 

  21. Wang N, Wu Y, Mi L, Zhang J, Li X, Fang Q (2014) The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 118(1):349–357. https://doi.org/10.1007/s10973-014-3965-2

    Article  CAS  Google Scholar 

  22. Yang Z, Ding L, Wu P, Liu Y, Nie F, Huang F (2015) Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem Eng J 268:60–66. https://doi.org/10.1016/j.cej.2015.01.024

    Article  CAS  Google Scholar 

  23. He Y, Li W, Han N, Wang J, Zhang X (2019) Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl Energy 247:615–629. https://doi.org/10.1016/j.apenergy.2019.04.077

    Article  CAS  Google Scholar 

  24. Choi TM, Je K, Park J-G, Lee GH, Kim S-H (2018) Photonic capsule sensors with built-in colloidal crystallites. Adv Mater 30(43):1803387. https://doi.org/10.1002/adma.201803387

    Article  CAS  Google Scholar 

  25. Lee TY, Lee S, Kim YH, Kim DJ, Amstad E, Lee C-S, Kim S-H (2019) Microfluidic fabrication of capsule sensor platform with double-shell structure. Adv Funct Mater 29(48):1902670. https://doi.org/10.1002/adfm.201902670

    Article  CAS  Google Scholar 

  26. Fei X, Zhao H, Zhang B, Cao L, Yu M, Zhou J, Yu L (2015) Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell. Colloids Surf Physicochem Eng Aspects 469:300–306. https://doi.org/10.1016/j.colsurfa.2015.01.033

    Article  CAS  Google Scholar 

  27. Zhao H, Fei X, Zhang B, Zhao S, Li G, Cao L (2019) Controlling the size of fragrance microcapsules using designed agitator paddles: experiment and CFD simulation. Particuology 43:38–45. https://doi.org/10.1016/j.partic.2017.12.008

    Article  CAS  Google Scholar 

  28. Zhao H, Fei X, Cao L, Zhang B, Liu X (2019) The fabrication of fragrance microcapsules and their sustained and broken release behavior. Materials 12(3):393. https://doi.org/10.3390/ma12030393

    Article  CAS  Google Scholar 

  29. Li W, Zhang X-X, Wang X-C, Niu J-J (2007) Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys 106(2–3):437–442. https://doi.org/10.1016/j.matchemphys.2007.06.030

    Article  CAS  Google Scholar 

  30. Li W, Song G, Tang G, Chu X, Ma S, Liu C (2011) Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 36(2):785–791. https://doi.org/10.1016/j.energy.2010.12.041

    Article  CAS  Google Scholar 

  31. Khakzad F, Alinejad Z, Shirin-Abadi AR, Ghasemi M, Mahdavian AR (2013) Optimization of parameters in preparation of PCM microcapsules based on melamine formaldehyde through dispersion polymerization. Colloid Polym Sci 292(2):355–368. https://doi.org/10.1007/s00396-013-3076-9

    Article  CAS  Google Scholar 

  32. Alkan C, Aksoy SA, Anayurt RA (2015) Synthesis of poly(methyl methacrylate-co-acrylic acid)/n-eicosane microcapsules for thermal comfort in textiles. Text Res J 85(19):2051–2058. https://doi.org/10.1177/0040517514548751

    Article  CAS  Google Scholar 

  33. Wu B, Zheng G, Chen X (2015) Effect of graphene on the thermophysical properties of melamine-urea-formaldehyde/N-hexadecane microcapsules. RSC Adv 5(90):74024–74031. https://doi.org/10.1039/c5ra12566a

    Article  CAS  Google Scholar 

  34. Sarkar S, Kim B (2017) Analysis of graphene-encapsulated polymer microcapsules with superior thermal and storage stability behavior. Polym Degrad Stab 138:72–81. https://doi.org/10.1016/j.polymdegradstab.2017.02.012

    Article  CAS  Google Scholar 

  35. Zhang XX, Tao XM, Yick KL, Fan YF (2005) Expansion space and thermal stability of microencapsulated n-octadecane. J Appl Polym Sci 97(1):390–396. https://doi.org/10.1002/app.21760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 51703155, 51578360, 51778398, 51703154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuening Fei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 465 kb)

Supplementary material 2 (MPG 3640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Fei, X., Cao, L. et al. Changes in microcapsules under heating: the effect of particle size on thermal stability and breakability. J Mater Sci 55, 3902–3911 (2020). https://doi.org/10.1007/s10853-019-04297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04297-8

Navigation