Skip to main content

Advertisement

Log in

Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are crystalline nano/microporous materials assembled from organic molecules through covalent bonds. Having various advantages such as large surface area, fully conjugated structure, and being in atom-thick dimensions makes COFs a promising candidate for numerous applications such as energy storage, electrocatalysis, and electrochemical devices. Yet, their potential for facilitating biosensor design and bioelectrochemical processes has not extensively been investigated. Therefore, in this study, we harnessed the simplicity, enhanced conductive property, and organic nature of COFs in electrochemical enzymatic biosensor design that aimed to detect superoxide radicals as a model system. Two different triazine-based COFs, CTF-1 and TRITER-1, were successfully synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrochemical studies demonstrated that CTF-1 improves the electrochemical performance of the enzymatic biosensors and is suitable for electrode design. Using the developed CTF-1-based biosensor that uses superoxide dismutase (SOD) as recognizing element, we measured the levels of superoxide anions, which are known to include in carcinogenesis process, with 0.5 nM detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Moller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707

    Article  Google Scholar 

  2. Stock N, Biswas S (2011) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    Article  Google Scholar 

  3. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  4. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43:6141–6617

    Article  CAS  Google Scholar 

  5. Eddaoudi M, Sava DF, Eubank JF, Adila K, Guillerm V (2015) Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev 44:228–249

    Article  CAS  Google Scholar 

  6. Ding S-Y, Wang W (2013) Introduction to metal–organic frameworks, covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568

    Article  CAS  Google Scholar 

  7. Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks, chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063

    Article  CAS  Google Scholar 

  8. Sakaushi K, Antonietti M (2015) Carbon- and nitrogen-based organic frameworks. Acc Chem Res 48:1591–1600

    Article  CAS  Google Scholar 

  9. Segura JL, Mancheno MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 45:5635–5671

    Article  CAS  Google Scholar 

  10. Das S, Heasman P, Ben T, Qiu S (2017) Porous organic materials: strategic design and structure–function correlation. Chem Rev 117:1515–1563

    Article  CAS  Google Scholar 

  11. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361

    Article  CAS  Google Scholar 

  12. Dogru M, Bein T (2014) On the road towards electroactive covalent organic frameworks. Chem Commun 50:5531–5546

    Article  CAS  Google Scholar 

  13. Rao MR, Fang Y, Feyter SD, Perepichka DF (2017) Conjugated covalent organic frameworks via Michael addition–elimination. J Am Chem Soc 139:2421–2427

    Article  CAS  Google Scholar 

  14. Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J, Thomas A, Zhi L (2015) Structural evolution of 2D microporous covalent triazine-based framework toward the Study of high-performance supercapacitors. J Am Chem Soc 137:219–225

    Article  CAS  Google Scholar 

  15. Khattak AM, Ghazi ZA, Liang B, Khan NA, Iqbal A, Li L, Tang Z (2016) A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J Mater Chem A 4:16312–16317

    Article  CAS  Google Scholar 

  16. Ling P, Lei J, Ju H (2015) Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens Bioelectron 71:373–379

    Article  CAS  Google Scholar 

  17. Lu X, Wang X, Wu L, Wu L, Lei F, Gao Y, Chen J (2016) Response characteristics of bisphenols on metalorganic framework based tyrosinase nanosensor. ACS Appl Mater Interfaces 8(25):16533–16539

    Article  CAS  Google Scholar 

  18. Deep A, Bhardwaj SK, Paul AK, Kim KH, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 15(65):226–231

    Article  Google Scholar 

  19. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR (2013) A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens Bioelectron 15(42):426–429

    Article  Google Scholar 

  20. Wang X, Lu X, Wu L, Chen J (2015) 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens Bioelectron 15(65):295–301

    Article  CAS  Google Scholar 

  21. Zhang C, Wang X, Hou M, Li X, Wu X, Ge J (2017) Immobilization on metal–organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl Mater Interfaces 9(16):13831–13836

    Article  CAS  Google Scholar 

  22. Wu Y, Han J, Xue P, Xu R, Kang Y (2015) Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7:1753–1759

    Article  CAS  Google Scholar 

  23. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal–organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6(4):20160027

    Article  Google Scholar 

  24. Liao H, Ding H, Li B, Ai X, Wang C (2014) Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J Mater Chem A 2:8854–8858

    Article  CAS  Google Scholar 

  25. Bi B, Fang W, Li L, Wang J, Liang S, He Y, Liu M, Wu L (2015) Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol Rapid Commun 36:1799–1805

    Article  CAS  Google Scholar 

  26. Gomes R, Bhanja P, Bhaumik A (2015) A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem Commun 51:10050–10053

    Article  CAS  Google Scholar 

  27. Chang F, Guo J, Wu G, Liu G, Zhang M, He T, Wang P, Yu P, Chen P (2015) Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Adv 5:3605–3610

    Article  CAS  Google Scholar 

  28. Kuecken S, Schmidt J, Zhi L, Thomas A (2015) Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent Triazine frameworks. J Mater Chem A 3:24422–24427

    Article  CAS  Google Scholar 

  29. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  30. Zhou Y, Ding J, Liang T, Abdel-Halim E-S, Jiang L, Zhu J-J (2016) FITC doped rattle-type silica colloidal particle-based ratiometric fluorescent sensor for biosensing and imaging of superoxide anion. ACS Appl Mater Interfaces 8:6423–6430

    Article  CAS  Google Scholar 

  31. Tang J, Zhu X, Niu X, Liu T, Zhao H, Lan M (2015) An amperometric superoxide anion radicalbiosensor based on SOD/PtPd-PDARGO modified electrode. Talanta 137:18–24

    Article  CAS  Google Scholar 

  32. Thandavan K, Gandhi S, Sethuraman S, Bosco J, Rayappan B, Krishnan UM (2013) A novel nano-interfaced superoxide biosensor. Sens Actuators B 176:884–892

    Article  CAS  Google Scholar 

  33. Wang M-Q, Ye C, Bao S-J, Xu M-W, Zhang Y, Wang L, Ma X-Q, Guo J, Li C-M (2017) Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells. Biosens Bioelectron 87:998–1004

    Article  CAS  Google Scholar 

  34. Penga F, Xu T, Wu F, Ma C, Liu Y, Li J, Zhao B, Mao C (2017) Novel biomimetic enzyme for sensitive detection of superoxide anions. Talanta 174:82–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Derkus.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, O., Derkus, B. Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J Mater Sci 55, 3034–3044 (2020). https://doi.org/10.1007/s10853-019-04254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04254-5

Navigation