Skip to main content

Advertisement

Log in

Review of automated fibre placement and its prospects for advanced composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fibre placement is a research hot spot for the intelligent manufacturing of advanced composites, and the efficiency of fibre placement has become an important index to evaluate the performance and cost of composite products. The traditional fibre placement method is mainly based on fibre winding (FW). However, the quality stability and placement efficiency are both higher in automated fibre placement (AFP) than in FW. Accordingly, a detailed discussion on this issue is provided herein. In this review, the concept and main research areas of AFP are introduced, a comprehensive literature review on the key AFP technologies is presented, and the characteristics for these key technologies are analysed. Then, the current AFP research status in various countries is investigated and compared, and the existing problems and future development trends are noted. Finally, the large-scale application prospects of AFP in high-performance fields (e.g. aerospace) are forecasted, and some new methods and new ideas for improving the performance of fibre placement systems are proposed, including the application of induction welding to enhance the modular function of the placement head device and the comprehensive utilization of 3D printing and topology optimization for composite fibre placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43

Similar content being viewed by others

References

  1. Li SY, Wang XP, Zhu LJ (2009) Path planning for composites fiber placement. Aerosp Mater Technol 39(2):25–29

    CAS  Google Scholar 

  2. Hao YK, Xiao JY (2004) Composite materials with high performance. Chemical Industry Publishing House, Beijing

    Google Scholar 

  3. Hollaway LC (2003) The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Constr Build Mater 17(6–7):365–378

    Article  Google Scholar 

  4. Feng W, Ait-Kadi A, Riedl B (2002) Polymerization compounding: epoxy-montmorillonite nanocomposites. Polym Eng Sci 42(9):1827–1835

    Article  CAS  Google Scholar 

  5. Hartwig G (1988) Overview of advanced fibre composites. Cryogenics 28(4):216–219

    Article  CAS  Google Scholar 

  6. Molyneux M, Murray P, Murray BP (1983) Prepreg, tape and fabric technology for advanced composites. Composites 14(2):87–91

    Article  CAS  Google Scholar 

  7. Bardy J, Legrand X, Crosky A (2012) Configuration of a genetic algorithm used to optimise fibre steering in composite laminates. Compos Struct 94(6):2048–2056

    Article  Google Scholar 

  8. Bannister M (2001) Challenges for composites into the next millennium—a reinforcement perspective. Compos Part A Appl Sci Manuf 32(7):901–910

    Article  Google Scholar 

  9. Crosky A, Grant C, Kelly D, Legrand X, Pearce G (2015) Fibre placement processes for composites manufacture. In: Boisse P (ed) Advances in composites manufacturing and process design. Woodhead Publishing, Cambridge, pp 79–92

    Chapter  Google Scholar 

  10. Li Y, Xiao J (2002) Composite fiber placement technology and its application. Fiber Compos 19(3):39–41

    Google Scholar 

  11. Chen YL (2011) Advances of aeronautical composites automation technology. Aeronaut Sci Technol 4:15–16

    CAS  Google Scholar 

  12. Rafiee R (2016) On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: a review. Compos Struct 143:151–164

    Article  Google Scholar 

  13. Setvati MR, Mustaffa Z, Shafiq N, Syed ZI (2014) A review on composite materials for offshore structures. In: Proceedings of the ASME 2014 33rd International conference on Ocean, Offshore and Arctic Engineering, vol 5, Materials Technology; Petroleum Technology. ASME, San Francisco, California, USA

  14. Hao JW (2010) Development of composites manufacturing automation technology. Aeronaut Manuf Technol 17:26–29

    Google Scholar 

  15. Shen J, Xie HQ (2006) Progress of research and application for aeronautical composites. FRP/Compos 5:48–54

    Google Scholar 

  16. Tian ZR (2004) Methods of mathematical mechanics in composites. Defense Industry Publishing House, Beijing

    Google Scholar 

  17. Brosius D (2007) Boeing 787 update. High Perform Compos 5:56–59

    Google Scholar 

  18. Company Boeing (2003) Boeing opts for composite for 7E7. Reinf Plast 47(7):10–12

    Article  Google Scholar 

  19. Marsh G (2007) Airbus takes on Boeing with reinforced plastic A350 XWB. Reinf Plast 51(11):26–29

    Article  Google Scholar 

  20. Espalia S (2005) The airbus A380 HTP. Aeronaut Forum Proc 56(8):67–72

    Google Scholar 

  21. Dora J, Hinrichsen J (2001) Material and technology developments for the A380. In: Proceedings of the 22nd international SAMPE Europe conference, pp 123–134

  22. Chen SJ (2004) Recent developments in advanced composite materials. Mater Eng 9:9–13

    Google Scholar 

  23. He XD (2006) Overview of advanced composite materials in aerospace applications. High-Tech Fibers Appl 31(2):9–11

    Google Scholar 

  24. Du SY (2007) Advanced composites and aerospace. Acta Mater Compos Sin 24(1):1–12

    Google Scholar 

  25. Du SY, Guan ZD (2008) Thoughts on the coping strategies of advanced composite materials technology for large passenger aircrafts in China. Acta Mater Compos Sin 25(1):1–10

    Google Scholar 

  26. Cao CX (2008) Generation of material technology, a generation of large aircraft. Acta Aeronaut Astronaut Sin 29(3):701–706

    Google Scholar 

  27. Chen SJ (2008) Composite technology and large aircraft. Acta Aeronaut Astronaut Sin 29(3):605–610

    CAS  Google Scholar 

  28. Vandventer J (2007) CATIA V5 analysis and AFC (nonlinear finite element analysis) applications in the new Boeing 787 aircraft. Mech Des Manuf Eng 16:50–51

    Google Scholar 

  29. Feng J (2009) Application of composite technology in contemporary aircraft structures. Aviat Manuf Technol 22:38–42

    Google Scholar 

  30. Dan L, Qi D (2009) Survey report on low cost manufacturing technology of composite materials. Aviat Manuf Technol 15:76–77

    Google Scholar 

  31. Shirinzadeh B, Cassidy G, Oetomo D, Alici G, Ang MH (2007) Trajectory generation for open-contoured structures in robotic fibre placement. Robot Comput Integr Manuf 23(4):380–394

    Article  Google Scholar 

  32. Han ZY, Fu HY, Fu YZ et al (2004) Analysis and application of filament winding with concave curved surface. Propul Technol 25(3):286–288

    Google Scholar 

  33. Wang GY, Cao J, Zhang H (2012) A 2-axis computer-controlled winding forming method for composite bend pipe. J Harbin Technol U 44(7):130–134

    Google Scholar 

  34. Kuang ZP, Dai D, Wang WG et al (2009) Study on fiber-stabilized winding. Aviat Manuf Technol S1:64–67

    Google Scholar 

  35. Zu L, Koussios S, Beukers A (2011) Integral design for filament-wound composite pressure vessels. Polym Polym Compos 19(S2):413–420

    CAS  Google Scholar 

  36. Mislavsky B, Vek K (2006) Basalt fiber an option for filament winding. Reinf Plast 50(10):12

    Google Scholar 

  37. Ge X (2012) Parameterized self-motion manifold of 7-DOF automatic fiber placement robotic manipulator. J Mech Eng 48(13):27–31

    Article  Google Scholar 

  38. Zhou XQ, Cao ZH (2009) Development and application of automatic placement technology for composite materials. Aviat Manuf Technol 1(s1):1–3

    Google Scholar 

  39. Lamontia M, Funck SB, Gruber MB, Cope RD, Waibel BJ, Gopez NM (2003) Manufacturing flat and cylindrical laminates and built up structure using automated thermoplastic tape laying, fiber placement, and filament winding. SAMPE J 39(2):30–38

    Google Scholar 

  40. Stokes-Griffin CM, Kollmannsberger A, Ehard S, Compston P, Drechsler K (2018) Manufacture of steel–CF/PA6 hybrids in a laser tape placement process: effect of first-ply placement rate on thermal history and lap shear strength. Compos Part A Appl Sci Manuf 111:42–53

    Article  CAS  Google Scholar 

  41. Zhang JF, Hu B, Xu DL et al (2016) Fiber placement layout planning which consider fiber bundle deformation and layer mechanics direction. J Harbin Technol U 48(1):172–179

    Google Scholar 

  42. Yu TM, Gao HB, Wang BM et al (2018) Research progress of molding process of carbon fiber reinforced thermoplastic composites. Eng Plast Appl 46(4):139–144

    Google Scholar 

  43. Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54(2):355–360

    Article  Google Scholar 

  44. Novo PJ, Silva JF, Nunes JP, Marques AT (2016) Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos Part B Eng 89:328–339

    Article  CAS  Google Scholar 

  45. Rasek A (2007) Efficient method for non-linear termochemical analysis of composite structures undergoing autoclave processing. The University of British Columbia, Vancouver

    Google Scholar 

  46. Sadat H (2005) A general lumped model for transient heat conduction in one-dimensional geometries. Appl Therm Eng 25(4):567–576

    Article  Google Scholar 

  47. Coqueret X, Krzeminski M, Ponsaud P, Defoort B (2009) Recent advances in electron-beam curing of carbon fiber-reinforced composites. Radiat Phys Chem 78(7):557–561

    Article  CAS  Google Scholar 

  48. Alessi S, Conduruta D, Pitarresi G, Dispenza C, Spadaro G (2010) Hydrothermal ageing of radiation cured epoxy resin-polyether sulfone blends as matrices for structural composites. Polym Degrad Stab 95(4):677–683

    Article  CAS  Google Scholar 

  49. Alessi S, Conduruta D, Pitarresi G, Dispenza C, Spadaro G (2011) Accelerated ageing due to moisture absorption of thermally cured epoxy resin/polyethersulphone blends. Thermal, mechanical and morphological behaviour. Polym Degrad Stab 96(4):642–648

    Article  CAS  Google Scholar 

  50. Pitarresi G, Alessi S, Tumino D, Nowicki A, Spadaro G (2014) Interlaminar fracture toughness behavior of electron-beam cured carbon-fiber reinforced epoxy-resin composites. Polym Compos 35(8):1529–1542

    Article  CAS  Google Scholar 

  51. Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18(4):963–974

    Article  CAS  Google Scholar 

  52. Advani SG, Tucker CL (1990) A numerical simulation of short fiber orientation in compression molding. Polym Compos 11(3):164–173

    Article  Google Scholar 

  53. Sun Y, Liu TH (2006) Research and application progress of thermal plastic resin base composite of pulling and extruding molding. China Rubber Technol Eq 32(6):36–40

    Google Scholar 

  54. Wang H, Chen L, Ye F, Wang J (2018) A multi-hierarchical successive optimization method for reduction of spring-back in autoclave forming. Compos Struct 188:143–158

    Article  Google Scholar 

  55. Mezeix L, Seman A, Nasir MNM, Aminanda Y, Rivai A, Castanié B, Olivier P, Ali KM (2015) Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Compos Struct 124:196–205

    Article  Google Scholar 

  56. Liu J, Zeng B, Yang Y, Li N, Guo J (2014) High-current-density edge electron emission and electron beam shaping for vacuum electronics using flexible graphene paper. IEEE Trans Electron Devices 61(6):1776–1780

    Article  CAS  Google Scholar 

  57. Chen JP, Li Y, Liu WP, Song Q, Yang Y, Lin Z (2019) Development status of aviation in situ forming technology for continuous fiber reinforced thermoplastic resin matrix composites. Acta Mater Compos Sin. https://doi.org/10.13801/j.cnki.fhclxb.20190102.20190001

    Article  Google Scholar 

  58. Wu YQQG (2018) Effect of molding process on properties of medium temperature curing epoxy carbon fiber composites. Hi-Tech Fiber Appl 06:45–50

    Google Scholar 

  59. Jin SQ, Li WX, Liu HX (2018) Filling simulation of resin transfer molding process for stitched sandwich composites. Acta Mater Compos Sin 35(12):3342–3349

    Google Scholar 

  60. Liu Y, Zhu GM (2018) Development of curing process of fiber reinforced resin matrix composites. China Plast 32(06):1–9

    Google Scholar 

  61. Chen JN, Xu FQ, Wang ZG (2018) Study on process of silicone rubber auxiliary press forming resin matrix composites. FRP/Compos 06:78–82

    Google Scholar 

  62. Tosh MW, Kelly DW (2000) On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates. Compos Part A Appl Sci Manuf 31(10):1047–1060

    Article  Google Scholar 

  63. Li R, Kelly D, Crosky A (2002) Strength improvement by fibre steering around a pin loaded hole. Compos Struct 31(10):1047–1060

    Google Scholar 

  64. Kelly DW, Willgoss R, Li R, Crosky A (2001) Improvement of bearing strength of mechanically fastened composite joints using fiber steering. In: Repecka L, Saremi FF (eds) Proceedings of the 48th international SAMPE symposium. Repecka, Long Beach, pp 2495–2506

  65. Li R, Kelly D, Arima S, Willgoss R, Crosky A (2002) Fiber steering around a cutout in a shear loaded panel. In: Proceedings of the 49th international SAMPE symposium. Rasmussen, Long Beach, pp 377–383

  66. Crosky A, Grant C, Kelly D (2012) Fiber placements. In: Nocolais N, Borzacchiello A, Lee SM (eds) Wiley encyclopedia of composites. Wiley, Hoboken, pp 945–950

    Google Scholar 

  67. Niu XJ, Yang T, Li Y (2017) Variable stiffness placement to improve tensile strength of single nail and double shear bolts. FRP/Compos 2:26–31

    Google Scholar 

  68. Hu B, Xu DL (2014) Trajectory planning of open surface fiber placement based on ergodic method. FRP/Compos 6:20–24

    Google Scholar 

  69. Lu M, Zhou LS, Wang XP (2011) An optimization algorithm for fiber placement path planning based on projection method. China Mech Eng 22(16):1993–1996

    Google Scholar 

  70. Shao GJ, You YP, Xiong H (2005) Fiber placement path planning for free-form component. J Nanjing U Aeronaut Astronaut 37(s1):144–148

    Google Scholar 

  71. Shao GJ, You YP, Liao QH (2006) Optimal design of fiber placement path for composites with open pore laminates. FRP/Compos 4:31–34

    Google Scholar 

  72. Zhu WD, Zhang X, Qi DS et al (2018) Numerical simulation and experimental verification of tensile behavior of composites with variable stiffness. Acta Mater Compos Sin 03:599–606

    Google Scholar 

  73. Kong XH, Wang ZJ (2012) Finite element incremental damage strength analysis based on ABAQUS. Comput Appl Softw 10:236–240

    Google Scholar 

  74. Xie LT, Zhu L, Wang JH et al (2016) Study on fiber placement trajectory of perforated laminates under tensile loading. J Solid Rocket Technol 39(2):247–252

    Google Scholar 

  75. Kelly DW, Elsley M (1995) A procedure for determining load paths in elastic continua. Eng Comput 12(5):415–424

    Article  Google Scholar 

  76. Kelly DW (1996) Load path calculations and applications using finite element analysis. Institution of Engineers, Australia

    Google Scholar 

  77. Kelly DW, Tosh MW (2000) Interpreting load paths and stress trajectories in elasticity. Eng Comput 17(2):117–135

    Article  Google Scholar 

  78. Kelly DW, Hsu P, Asudullah M (2001) Load paths and load flow in finite element analysis. Eng Comput 18(1/2):304–313

    Article  Google Scholar 

  79. Li R, Kelly D, Crosky A, Schoen H, Smollich L (2006) Improving the efficiency of fiber steered composite joints using load path trajectories. J Compos Mater 40(18):1645–1658

    Article  CAS  Google Scholar 

  80. Marhadi K, Venkataraman S (2009) Comparison of quantitative and qualitative information provided by different structural load path definitions. Int J Simul Multidiscip Des Optim 3(3):384–400

    Article  Google Scholar 

  81. Zhao J, Li B, Gao X, Zhen Y, Yang H (2013) Research on the load-bearing characteristics of complex structural components based on the representation of load paths. In: 2013 IEEE international symposium on assembly and manufacturing (ISAM). IEEE, Xi’an, China

  82. Yu XH, Chui JB, Chui NZ (2007) Study on loading path of compound bulging of three-way pipe. Mach Tool Hydraul 35(12):71–73

    Google Scholar 

  83. Kelly D, Reidsema C, Bassandeh A, Pearce G, Lee M (2011) On interpreting load paths and identifying a load bearing topology from finite element analysis. Finite Elem Anal Des 47(8):867–876

    Article  Google Scholar 

  84. Kelly DW, Reidsema CA, Lee MCW (2011) An algorithm for defining load paths and a load bearing topology in finite element analysis. Eng Comput 28(2):196–214

    Article  Google Scholar 

  85. Pei J, Wang X, Pei J, Yang Y (2018) Path planning based on ply orientation information for automatic fiber placement on mesh surface. Appl Compos Mater 25(6):1477–1490

    Article  Google Scholar 

  86. Legrand X, Kelly D, Crosky A, Crépin D (2006) Optimisation of fibre steering in composite laminates using a genetic algorithm. Compos Struct 75(1–4):524–531

    Article  Google Scholar 

  87. Tabakov PY, Walker M (2010) A technique for stiffness improvement by optimization of fiber steering in composite plates. Appl Compos Mater 17(5):453–461

    Article  Google Scholar 

  88. Honda S, Narita Y (2011) Vibration design of laminated fibrous composite plates with local anisotropy induced by short fibers and curvilinear fibers. Compos Struct 93(2):902–910

    Article  Google Scholar 

  89. Belnoue JPH, Mesogitis T, Nixon-Pearson OJ, Kratz J, Ivanov DS, Partridge IK, Potter KD, Hallett SR (2017) Understanding and predicting defect formation in automated fibre placement pre-preg laminates. Compos Part A Appl Sci Manuf 102:196–206

    Article  CAS  Google Scholar 

  90. Lei S (2018) Simulation based optimization on automated fiber placement process. Mater Sci Eng 307:107–112

    Google Scholar 

  91. Zhang X, Xie W, Hoa SV (2018) Semi-offline trajectory synchronized algorithm of the cooperative automated fiber placement system. Robot Comput Integr Manuf 51:53–62

    Article  Google Scholar 

  92. Yan L, Wang FZ, Shi YY (2015) Path planning algorithm for fiber placement based on non equidistant offset. Acta Aeronaut Astronaut Sin 36(11):3715–3723

    Google Scholar 

  93. Jiang M, Wu B, Li F (2017) Path optimization for open-contoured structures in robotic fibre placement. 32nd youth academic annual conference of Chinese Association of automation (YAC). IEEE, Hefei, pp 207–212

    Chapter  Google Scholar 

  94. Parnas L, Oral S, Ceyhan Ü (2003) Optimum design of composite structures with curved fiber courses. Compos Sci Technol 63(7):1071–1082

    Article  Google Scholar 

  95. Setoodeh S, Abdalla MM, Gürdal Z (2006) Design of variable–stiffness laminates using lamination parameters. Compos Part B Eng 37(4–5):301–309

    Article  Google Scholar 

  96. Shao ZX, Fu HY, Han ZY et al (2010) Planning and optimization of fiber placement trajectory for S-shaped inlet. J Astronaut 31(3):855–861

    Google Scholar 

  97. Yan F (2003) Genetic algorithm for optimal design of composite laminated structures. Aerosp Shanghai 3(2):1–5

    Google Scholar 

  98. An LL, Zhou Y, Zhou LS (2007) Path planning and wire number solution of composite fiber placement. Acta Aeronaut Astronaut Sin 28(3):745–750

    Google Scholar 

  99. Wu MH, Liang YD, Yu YH (2001) Stability of geodesic on ring surface. Appl Math Ser A 16(4):481–485

    Google Scholar 

  100. Shao ZX, Fu HY, Li DC (2009) The study on the linking-up of free-form surface fiber placement track based on mesh creating. Key Eng Mater 392–394:682–687

    Google Scholar 

  101. Zeng W, Xiao J, Li Y (2010) Research on trajectory planning and coverage analysis of automatic fiber placement for rotary body. J Astronaut 31(1):239–243

    Google Scholar 

  102. Qu J, Sarma R (2004) The continuous non-linear approximation of procedurally defined curves using integral B-splines. Eng Comput 20(1):22–30

    Article  Google Scholar 

  103. Evans DO, Vaniglia MM, Hopkins PC (1989) Fiber placement process study. Int SAMPE Symp Exhib 34(2):1822–1833

    Google Scholar 

  104. Thiffault C, Sicard P, Bouscayrol A (2004) Tension control loop using a linear actuator based on the energetic macroscopic representation. In: Canadian conference on electrical and computer engineering 2004 (IEEE Cat. No. 04CH37513). IEEE, Niagara Falls, Ontario, Canada, pp 2041–2046

  105. Roh J (2006) Digital PWM controller with one-bit noise-shaping interface. Analog Integr Circuits Signal Process 49(1):11–17

    Article  Google Scholar 

  106. Shao ZX, Fu HY, Han ZY (2008) Research on the post-processing technology for the fiber placement path. J Astronaut 29(6):2023–2029

    Google Scholar 

  107. Youngkeit DC (1990) Method for making a composite component using a transverse tape. US patent, US 4938824 A

  108. Shirinzadeh B, Alici G, Foong CW, Cassidy G (2004) Fabrication process of open surfaces by robotic fibre placement. Robot Comput Integr Manuf 20(1):17–28

    Article  Google Scholar 

  109. Hale RD, Moon RS, Lim K, Schueler K, Yoder A (2004) Integrated design and analysis tools for reduced weight, affordable fiber steered composites. University of Kansas, Lawrence, Kansas

    Book  Google Scholar 

  110. Wang XP, An LL, Zhang LY, Zhou LS (2008) Uniform coverage of fibres over open-contoured freeform structure based on arc-length parameter. Chin J Aeronaut 21(6):571–577

    Article  Google Scholar 

  111. Schueler K, Hale R (2002) Object-oriented implementation of an integrated design and analysis tool for fiber placed structures. In: 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Denver, Colorado

  112. Schueler K, Miller J, Hale R (2004) Approximate geometric methods in application to the modeling of fiber placed composite structures. J Comput Inf Sci Eng 4(3):251–256

    Article  Google Scholar 

  113. Hale RD, Schueler K (2002) Knowledge-based software systems for composite design, analysis and manufacturing. SAE Technical Paper 2002-01-153. SAE

  114. Chiou C-J, Lee Y-S (2002) A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput Aided Des 34(5):357–371

    Article  Google Scholar 

  115. Wen LW, Xiao J, Wang XF (2015) Research progress of automatic placement technology for composite materials in China. J Nanjing U Aeronaut Astronaut 47(5):637–649

    Google Scholar 

  116. Inc Vistagy (2012) Vistagy Fiber SIM 2012 Brochure. Spring, New York

    Google Scholar 

  117. Hasenjaeger B (2013) Programming and simulating automated fiber placement CNC machines. SAMPE J 49(6):7–13

    Google Scholar 

  118. Lukaszewicz DHJA, Ward C, Potter KD (2012) The engineering aspects of automated prepreg layup: history, present and future. Compos Part B Eng 43(3):997–1009

    Article  CAS  Google Scholar 

  119. CGTech Ltd (2012) VERICUT Composite Brochure. Springer, New York

    Google Scholar 

  120. Zhou XD, Xu DL (2014) Design of virtual numerical control system for fiber placement. Mod Mach 6:1–3

    Google Scholar 

  121. Qian J, Xiao J, Zhao DB (2004) Simulation research on automatic fiber placement of composite frame satellite joint. J Astronaut 25(6):694–696

    Google Scholar 

  122. Zuo YL, Xiao J, Li Y et al (2008) Modeling and simulation of automatic belt placement for perforated cylinder based on OpenGL in MFC environment. FRP/Compos 3:24–26

    Google Scholar 

  123. Duan YG, Dong XW, Ge YM, Liu D (2014) Delaunay graph based path planning method for mobile robot. Acta Aeronaut Astronaut Sin 35(9):2632–2640

    Google Scholar 

  124. Soucy KA (1996) In-process monitoring for quality assurance of automated composite fabrication. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation. Springer, Boston, pp 2225–2231

    Chapter  Google Scholar 

  125. Schmitt R, Pfeifer T, Orth A (2006) Feasible production of fiber-reinforced composites through inline inspection with machine vision. In: Metrology for a sustainable development: IMEKO XVIII world congress and IV Brazilian congress of metrology. Rio de Janeiro, Brazil

  126. Drinkwater BW, Wilcox PD (2006) Ultrasonic arrays for non-destructive evaluation: a review. NDT E Int 39(7):525–541

    Article  CAS  Google Scholar 

  127. Nguyen C, Krombholz C, Röstermundt D (2012) Influence inner online bracket die material edges detect von prepreg tows in fiber placement process. Deutscher Luft-und Raumfahrtkongress

  128. Shadmehri F, Ioachim O, Pahud O, Brunel J, Landry A, Hoa V, Ho-Jjati M (2015) Laser-vision inspection system for automated fiber placement process. In: 20th International conference on composite materials Copenhagen

  129. Ritter JA, Sjogren JF (2009) Real-Time Infrared Thermography Inspection and Control for Automated Composite Marterial Layup. US 7513964 B2

  130. Denkena B, Schmidt C, Völtzer K, Hocke T (2016) Thermographic online monitoring system for automated fiber placement processes. Compos Part B Eng 97:239–243

    Article  CAS  Google Scholar 

  131. Zhao JX (1992) Key technology plan of the defense department in USA: brief introduction and review of composites. Ordnance Mater Sci Eng 1:56–61

    Google Scholar 

  132. Wan JP, Zhu CS, Ma J et al (2016) Deformation source and numerical simulation of automatic fiber placement mold for ring complex surface. Electron Technol Softw Eng 9:95

    Google Scholar 

  133. Ma HT (2012) Study on mechanical properties of composite laminated plates with variable stiffness. Harbin I Technology, Harbin

    Google Scholar 

  134. Beckwith SW (2008) Filament winding vs. fiber placement manufacturing technologies. SAMPE J 44(2):54–55

    Google Scholar 

  135. Zhao JX (2013) Key technology program of the US Department of Defense: introduction and review of composites. Ordnance Mater Sci Eng 1:56–61

    Google Scholar 

  136. Kärger L, Kling A (2010) Feedback method transferring manufacturing data of TFP structures to as-build FE models. ECCM, DLR

    Google Scholar 

  137. Guasti F, Kutufa N, Matticari G, Rosi E (1998) Layer by layer E- beam curing of filament wounding composite materials with low energy electron beam accelerators. SAMPE J 34(2):29–34

    CAS  Google Scholar 

  138. Daniel L (2000) Automated tap placement with in situ electron beam cure. SAMPE J 36(2):11–33

    Google Scholar 

  139. Grant CG (2000) Fiber placement process utilization within the worldwide aerospace industry. SAMPE J 36(4):7–12

    Google Scholar 

  140. August Z, Ostrander G, Michasiow J, Hauber D (2013) Recent developments in automated fiber placement of thermoplastic composites. SAMPE J 50(2):30–37

    Google Scholar 

  141. Martins JRRA, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their time and effort. This work is supported by the National Natural Science Foundation of China under Grant No. 51575266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, X., Pei, J. et al. Review of automated fibre placement and its prospects for advanced composites. J Mater Sci 55, 7121–7155 (2020). https://doi.org/10.1007/s10853-019-04090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04090-7

Navigation