Skip to main content
Log in

On the binary Sb–Sn system: ab initio calculation and thermodynamic remodeling

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermodynamic descriptions of phase diagrams play an important role in modern materials engineering, especially as a part of materials genome used for development of new alloys. Therefore, it is crucial to have a thermodynamic database that is in agreement with recent experimental findings. The binary Sb–Sn system is an important part of step soldering and a promising Li-ion battery electrode; therefore, a knowledge of its phase equilibria is essential for modern engineering. The newest experimental results enhanced the knowledge about phase equilibria and crystal structures in this system, and hence it is possible to propose a new, more accurate thermodynamic model of this important binary system. In this work, the CALPHAD method was used for determination of Gibbs energies of all phases; moreover, the new knowledge about a crystal structure of intermetallic compound Sb3Sn4 enabled the application of the first-principles calculations, which made CALPHAD description more precise. The proposed thermodynamic description shows a good agreement with available experimental data and can be used for future development of higher-ordered alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ohnuma I, Liu XJ, Ohtani H, Ishida K (1999) Thermodynamioc database for micro-soldering alloys. J Electron Mater 28:1164–1171

    Article  CAS  Google Scholar 

  2. Jang JW, Kim PG, Tu KM, Lee M (1999) High-temperature lead-free SnSb solders: wetting reactions on Cu foils and phased-in Cu–Cr thin films. J Mater Res 14:3895–3900

    Article  CAS  Google Scholar 

  3. Corbin SF (2005) High-temperature variable melting point Sn–Sb solder paste using transient liquid-phase powder processing. J Electron Mater 34:1016–1025

    Article  CAS  Google Scholar 

  4. Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24

    CAS  Google Scholar 

  5. Olson GB (2000) Materials by design. Science 288:995–1001

    Article  CAS  Google Scholar 

  6. Schmetterer C, Polt J, Flandorfer H (2017) The phase equilibria in the Sb–Sn system—part I: literature review. J Alloys Compd 728:497–505

    Article  CAS  Google Scholar 

  7. Reinders W (1900) Alloys of antimony and tin. Z Anorg Chem 25:113–125

    Article  Google Scholar 

  8. Gallagher FE (1906) The alloys of antimony and tin. J Phys Chem US 10:93–98

    Article  Google Scholar 

  9. Williams RS (1907) On the alloys of antimony with magnese, chromium, silicon and tin, of bismuth with chromium and silicon and of magnese with tin and lead. Z Anorg Chem 55:1–33

    Article  CAS  Google Scholar 

  10. Loebe R (1911) Uber die Konstitution der ternaren Lagierungen von Blei, Zinn und Antimon. Metallurgie 8:7–15

    Article  CAS  Google Scholar 

  11. Konstantinow N, Smirnow W (1912) Uber die Legierungen von Zinn und Antimon. In: Internationale Zeitschrift fur Metallographie, Berlin, pp 152–171

  12. Stead JE, Spencer LJ (1919) On the Sb–Sn system. J Inst Met 22:127–130

    Google Scholar 

  13. Jones WM, Bowen EG (1930) The compound SnSb. Nature 126:846–847

    Article  CAS  Google Scholar 

  14. Bowen EG, Jones WM (1931) An X-rey investigation of the tin-antimony alloys. Philos Mag 106:441–462

    Article  Google Scholar 

  15. Broniewski W, Sliwowski L (1928) Antimony-tin alloys. Rev Met 25:312–321

    Article  CAS  Google Scholar 

  16. Iwase K, Aoki N, Osawa A (1931) DTA measurements in Sb–Sn alloys. Sci Rep Tohoku Imp Univ 20:353

    CAS  Google Scholar 

  17. Blondel R, Laffitte P (1935) Phase transformations in Sb–Sn alloys. Comptes Rendus 200:1472–1474

    CAS  Google Scholar 

  18. Hagg G, Hybinette AG (1935) X-ray studies on the system tin-antimony and tin-arsenic. Philos Mag 20:913–929

    Article  CAS  Google Scholar 

  19. Hansen M, Onderko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Book  Google Scholar 

  20. Eyro BL (1960) The solid solubility of antimony in tin. J Inst Met 88:223–224

    Google Scholar 

  21. Allen WP, Perepezko JH (1990) Constitution of the tin-antimony system. Scr Metall Mater 24:2215–2220

    Article  CAS  Google Scholar 

  22. Predel B, Schwermann W (1971) Constitution and thermodynamics of antimony-tin system. J Inst Met 99:169–172

    CAS  Google Scholar 

  23. Okamoto H, Subramanian PR, Massalski TB (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  24. Vassilev V, Lelaurain M, Hertz J (1997) A new proposal for the binary (Sn, Sb) phase diagram and its thermodynamic properties based on a new emf study. J Alloys Compd 247:223–233

    Article  Google Scholar 

  25. Ohtani H, Okuda K, Ishida K (1995) Thermodynamic study of phase equilibria in the Pb–Sn–Sb system. J Phase Equilb 16:416–429

    Article  CAS  Google Scholar 

  26. Hao IS, Kang T, Park PC (1977) On the Sb–Sn system: electrochemical measurement of thermodynamic properties in liquid phase. Korean Metall Trans 15:361–365

    Google Scholar 

  27. Chen SW, Chen CC, Gierlotka W, Zi AR, Chen PY, Wu HJ (2008) Phase equilibria of the Sn–Sb system. J Electron Mater 37:992–1002

    Article  CAS  Google Scholar 

  28. Schmetterer C, Polt J, Flandorfer H (2018) The phase equilibria in the Sb–Sn system—part II: experimental results. J Alloys Compd 743:523–536

    Article  CAS  Google Scholar 

  29. Kawakami M (1930) A further investigation of the heat of mixture in molten metals. Sci Rep Res Inst Tohoku Univ 19:521–549

    CAS  Google Scholar 

  30. Kleppa OJ (1956) A calorimetric investigation of some binary and ternary liquid alloys rich in tin. J Phys Chem 60:842–846

    Article  CAS  Google Scholar 

  31. Witting FE, Gehring E (1971) Die Mischungswarmen des Antimonos mit B-Metallen. Ber Bunsenges Phys Chem 71:372–376

    Google Scholar 

  32. Sommer F, Lück R, Rupf-Bolz N, Predel B (1983) Chemical short-range order in liquid Sb–Sn alloys proved with the aid of the dependence of the mixing enthalpies o temperature. Mater Res Bull 18:621–629

    Article  CAS  Google Scholar 

  33. Azzoui M, Notin M, Hertz J (1993) Ternary experimental excess functions by means of high-order polynomials. Enthalpy of mixing of liquid Pb–Sn–Sb alloys. Z Metallkd 84:545–551

    Google Scholar 

  34. Frantic RO, McDonalds HJ (1946) A thermodynamic study of the tin-antymony system. Trans Electrochem Soc 88:243–251

    Article  Google Scholar 

  35. Yanko JA, Drake AE, Hovorka F (1946) Thermodynamioc studies of dilute solutions in molten binary alloys. Trans Electrochem Soc 89:357–372

    Article  Google Scholar 

  36. Vassiliev V, Feutelais Y, Sghaier M, Legendre B (2001) Thermodynamic investigation in In-Sb, Sb–Sn and In-Sb–Sn liquid systems. J Alloys Compd 314:198–205

    Article  CAS  Google Scholar 

  37. Itoh K, Koiko K, Narita Y (1980) Activity measurement of Pb–Sn and Sn–Sb based molten alloys. Nippon Kogo Kaishi 96:97–101

    CAS  Google Scholar 

  38. Jendrzejczyk-Handzlik D, Fitzner K (2015) Thermodynamic properties of liquid (antimony + tin) and (gold + antimony + tin) alloys determined from e.mn.f. measurement. J Chem Thermodyn 85:86–93

    Article  CAS  Google Scholar 

  39. Jonsson B, Agren J (1986) Thermodynamic assessment of Sb–Sn system. Mater Sci Technol 2:913–916

    Article  Google Scholar 

  40. Oh CS, Shim JH, Lee B-J, Lee DN (1996) A thermodynamic study on the Ag-Sb–Sn system. J Alloys Compd 238:155–166

    Article  CAS  Google Scholar 

  41. Lysenko VA (2019) Thermodynamic reassessment of the Sb–Sn and In–Sb–Sn system. J Alloys Compd 776:850–856

    Article  CAS  Google Scholar 

  42. Okamoto H (1998) Sb–Sn (antimony-tin). J Phase Equilib 19:292

    Article  CAS  Google Scholar 

  43. Scientific Group Thermodata Europe (2015) Unary Database v. 5.0, France

  44. Kaptay G (2017) The exponential excess Gibbs energy model revisited. Calphad 56:169–184

    Article  CAS  Google Scholar 

  45. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  46. Bjorkman T (2011) CIF2Cell: generating geometries for electronic structure programs. Comput Phys Commun 182:1183–1186

    Article  CAS  Google Scholar 

  47. https://departments.icmab.es/leem/siesta/. Accessed 26 Sept 2017

  48. Okamoto H (2012) Sb–Sn (antimony-tin). J Phase Equilib Differ 34:347

    Article  Google Scholar 

  49. Schmid-Fetzer R, Andersson D, Chevalier PY, Eleno L, Fabrichnaya O, Kattner UR, Sundman B, Wang C, Watson A, Zabdyr L, Zinkevich M (2007) Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31:38–52

    Article  CAS  Google Scholar 

  50. Schiferl D, Barrett CS (1969) The crystal structure of arsenic at 4.2, 78 and 299 K. J Appl Cryst 2:30–36

    Article  CAS  Google Scholar 

  51. Allison MC, Avdeev M, Schmid S, Liu S, Söhnel T, Ling CD (2016) Synthesis, structure and geometrically frustrated magnetism of the layered oxide-stannide compounds Fe(Fe3-xMnx)Si2Sn7O16. Dalton Trans 45:9689–9694

    Article  CAS  Google Scholar 

  52. Andersson JO, Helander T, Höglund L, Shi PF, Sundman B (2002) Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26:273–312

    Article  CAS  Google Scholar 

  53. Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its application. Calphad 26:175–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Taiwan Ministry of Science and Technology under Grant 107-2221-E-259-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Gierlotka.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gierlotka, W. On the binary Sb–Sn system: ab initio calculation and thermodynamic remodeling. J Mater Sci 55, 347–357 (2020). https://doi.org/10.1007/s10853-019-03934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03934-6

Navigation