Skip to main content
Log in

Response surface statistical optimisation of zeolite-X/silica by hydrothermal synthesis

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hydrothermal alkaline synthesis of self-supporting zeolites from co-generation boiler sugar cane bagasse ash (SCBA) was measured by X-ray powder diffraction (XRD) scan yields (scan area percentages) method. A factorial design and a response surface statistical method were used to optimise the synthesis method. Temperature, NaOH concentration and aluminium/silica (Al/Si) ratio were determined to be the most influential factors in controlling zeolite-X yields, and these three variables were included in a response surface model (RSM) with a central composite design (CCD). The RSM model indicates that optimal zeolite-X formation conditions are 72.5 °C, 5 M NaOH and an Al/Si ratio of 3:5. The RSM/CCD matrix established an efficient statistical modelling of zeolite synthesis optimisation with the fewest possible number of experiments. Scanning electron microscopy examination shows that SCBA particles (20–100 µm) are covered with zeolite crystallites (0.3–0.8 µm in size) producing a self-supporting structure. XRD analyses show a dominance of zeolite-X (33.6%), with zeolite-A (4.7%), and an average Al/Si ratio of 4:5 that is close to published values. The Brunauer–Emmett–Teller (BET) apparent specific surface area measured 228 m2 g−1 (P/Po = 0.045), and ≈ 90% of the micro-porosity distribution is associated with ≈ 7 Å internal micropore, which is typical of zeolite-X. The self-supporting, composite nature and large effective grain size of the zeolites reported in this work opens a number of uses for the materials produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Deepchand K (2001) Commercial scale cogeneration of bagasse energy in Mauritius. Energy Sustain Dev 5(1):15–22

    Article  Google Scholar 

  2. Payá J, Monzó J, Borrachero MV, Díaz-Pinzón L, Ordóñez LM (2002) Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. J Chem Technol Biotechnol 77(3):321–325

    Article  Google Scholar 

  3. Sales A, Lima SA (2010) Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manage 30(6):1114–1122

    Article  CAS  Google Scholar 

  4. Teixeira SR, Pena AFV, Miguel AG (2010) Briquetting of charcoal from sugar-cane bagasse fly ash (SCBFA) as an alternative fuel. Waste Manage (Oxford) 30(5):804–807

    Article  CAS  Google Scholar 

  5. Teixeira SR, De Souza AE, De Almeida Santos GT, Vilche Peña AF, Miguel ÁG (2008) Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J Am Ceram Soc 91(6):1883–1887

    Article  CAS  Google Scholar 

  6. Usman A, Raji A, Hassan M, Waziri N (2014) Production and characterisation of aluminium alloy-bagasse ash composites. J Mech Civ Eng 11(4):38–44

    Google Scholar 

  7. Soltani N, Bahrami A, Pech-Canul MI, González LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935

    Article  CAS  Google Scholar 

  8. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73(3):257–262

    Article  CAS  Google Scholar 

  9. Le Blond JS, Horwell CJ, Williamson BJ, Oppenheimer C (2010) Generation of crystalline silica from sugarcane burning. J Environ Monit 12(7):1459–1470

    Article  Google Scholar 

  10. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EdMR (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem Concr Res 39(2):110–115

    Article  CAS  Google Scholar 

  11. Clark MW, Despland LM, Lake NJ, Yee LH, Anstoetz M, Arif E, Parr JF, Doumit P (2017) High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes. Heliyon 3(4):e00294

    Article  Google Scholar 

  12. Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T, Shimada A (2005) Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol 33(7):745–751

    Article  Google Scholar 

  13. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for production of high-purity silica xerogels from bagasse ash. Adv Powder Technol 20(5):468–472

    Article  CAS  Google Scholar 

  14. Purnomo CW, Salim C, Hinode H (2012) Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Micropor Mesopor Mat 162:6–13

    Article  CAS  Google Scholar 

  15. Shah B, Tailor R, Shah A (2011) Adaptation of bagasse fly ash, a sugar industry solid waste into zeolitic material for the uptake of phenol. Environ Prog Sustain Energy 30(3):358–367

    Article  CAS  Google Scholar 

  16. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Pearson Education Limited, Essex

    Google Scholar 

  17. Deer WA, Howie RA, Zussman J (1966) An introduction to the rock forming minerals. Longman, Harlow

    Google Scholar 

  18. Baerlocher C, McCusker LB, Olson D (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  19. Georgiev D, Bogdanov B, Krasimira A, Markovska I, Hristov Y (2009) Synthetic zeolites–structure, classification, current trends in zeolite synthesis review. In: Economics and society development on the base of knowledge, Bulgaria

  20. Chester A, Derouane EG (2010) Zeolite characterization and catalysis, 1st edn. Springer, Berlin

    Google Scholar 

  21. Breck DW, Eversole WG, Milton RM, Reed TB, Thomas TL (1956) Crystalline zeolites, the properties of a new synthetic zeolite, type A. J Am Chem Soc 78(23):5963–5972

    Article  CAS  Google Scholar 

  22. Sherman JD (1999) Synthetic zeolites and other microporous oxide molecular sieves. In: Proceedings of the national academy of science USA, geology, mineralogy, and human welfare, Irvine, CA, vol 7, pp 3471–3478

  23. Htun M, Htay M, Lwin M (2012) Preparation of Zeolite (NaX, Faujasite) from pure silica and alumina sources. In: International conference on chemical processes and environmental issues (ICCEEI’2012) July 15–16, Singapore

  24. Somerset V, Petrik L, Iwuoha E (2005) Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment. J Environ Sci Heal A 40(8):1627–1636

    Article  CAS  Google Scholar 

  25. Alberts J, Newman M, Evans D (1985) Seasonal variations of trace elements in dissolved and suspended loads for coal ash ponds and pond effluents. Water Air Soil Pollut 26(2):111–128

    Article  CAS  Google Scholar 

  26. Muniz JG, Ramirez A, Robles JM, Melo P, Bocardo JC, Martinez AM (2010) Synthesis and characterization of high silica zeolites from coal fly ash (CFA): two cases of zeolite syntheses from the same waste material. Latin Am Appl Res 40:323–328

    CAS  Google Scholar 

  27. Prasad B, Maity S, Sangita K, Mahato AK, Mortimer RJG (2012) Studies on synthesis and characteristics of zeolite prepared from Indian fly ash. Environ Technol 33(1):37–50

    Article  CAS  Google Scholar 

  28. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energ Combust 36(3):327–363

    Article  CAS  Google Scholar 

  29. Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM (2010) Hierarchical pore ZSM-5 zeolite structures: from micro- to macro-engineering of structured catalysts. Chem Eng J 161(3):397–402

    Article  CAS  Google Scholar 

  30. Ocampo F, Yun HS, Pereira MM, Tessonnier JP, Louis B (2009) Design of MFI zeolite-based composites with hierarchical pore structure: a new generation of structured catalysts. Cryst Growth Des 9(8):3721–3729

    Article  CAS  Google Scholar 

  31. Kovo AS (2012) Effect of temperature on the synthesis of zeolite X from ahoko Nigerian kaolin using novel metakaolinization technique. Chem Eng Commun 199(6):786–797

    Article  CAS  Google Scholar 

  32. Ruen-ngam D, Rungsuk D, Apiratikul R, Pavasant P (2009) Zeolite formation from coal fly ash and its adsorption potential. J Air Waste Manage 59(10):1140–1147

    Article  CAS  Google Scholar 

  33. Querol X, Alastuey A, Fernández-Turiel J, López-Soler A (1995) Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74(8):1226–1231

    Article  CAS  Google Scholar 

  34. Pophale R, Daeyaert F, Deem MW (2013) Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J Mater Chem 1(23):6750–6760

    Article  CAS  Google Scholar 

  35. Itani L, Liu Y, Zhang W, Bozhilov KN, Delmotte L, Valtchev V (2009) Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel. J Am Chem Soc 131(29):10127–10139

    Article  CAS  Google Scholar 

  36. Tarley CRT, Silveira G, dos Santos WNL, Matos GD, da Silva EGP, Bezerra MA, Miró M, Ferreira SLC (2009) Chemometric tools in electroanalytical chemistry: methods for optimization based on factorial design and response surface methodology. Microchem J 92(1):58–67

    Article  CAS  Google Scholar 

  37. Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M (2005) Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J Hazard Mater 123(1–3):187–195

    Article  CAS  Google Scholar 

  38. Vicente G, Coteron A, Martinez M, Aracil J (1998) Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind Crop Prod 8(1):29–35

    Article  CAS  Google Scholar 

  39. Velmurugan R, Selvamuthukumar S (2015) Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci 6:1–15

    Google Scholar 

  40. Dutta JR, Dutta PK, Banerjee R (2004) Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem 39(12):2193–2198

    Article  CAS  Google Scholar 

  41. Matlob AS, Kamarudin RA, Jubri Z, Ramli Z (2012) Response surface methodology for optimizing zeolite Na-A synthesis. Arab J Sci Eng 38(7):1713–1720

    Article  Google Scholar 

  42. Musyoka NM, Petrik LF, Gitari WM, Balfour G, Hums E (2012) Optimization of hydrothermal synthesis of pure phase zeolite Na–P1 from South African coal fly ashes. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(3):337–350

    Article  CAS  Google Scholar 

  43. Karami D, Rohani S (2009) Synthesis of pure zeolite Y using soluble silicate, a two-level factorial experimental design. Chem Eng Process Process Intensif 48(8):1288–1292

    Article  CAS  Google Scholar 

  44. Anderson M, Whitcomb P (2007) DOE Simplified: practical tools for effective experimentation, 2nd edn. CRC Press, New York

    Google Scholar 

  45. Aslan N (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol 185(1):80–86

    Article  CAS  Google Scholar 

  46. Anderson M, Whitcomb P (2005) RSM simplified: optimizing processes using response surface methods for design of experiments. Productivity Press, New York

    Google Scholar 

  47. Talero R, Trusilewicz L, Delgado A, Pedrajas C, Lannegrand R, Rahhal V, Mejía R, Delvasto S, Ramírez FA (2011) Comparative and semi-quantitative XRD analysis of Friedel’s salt originating from pozzolan and Portland cement. Constr Build Mater 25(5):2370–2380

    Article  Google Scholar 

  48. Chipera SJ, Bish DL (2013) Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases. Adv Mater Phys Chem 3:47–53

    Article  Google Scholar 

  49. Smith F (1999) Industrial applications of X-Ray diffraction. CRC Press, New York

    Book  Google Scholar 

  50. Bae YS, Yazaydin AO, Snurr RQ (2010) Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26(8):5475–5483

    Article  CAS  Google Scholar 

  51. Genc-Fuhrman H, Bregnhoj H, McConchie D (2005) Arsenate removal from water using sand-red mud columns. Water Res 39(13):2944–2954

    Article  CAS  Google Scholar 

  52. Clark MW, Munro L, Samed AJF, McConchie DM (2006) Best D Bauxsol™ based barriers for the treatment of metal contaminated ground waters. In: 5th ICEG environmental geotechnics: opportunities, challenges and responsibilities for environmental geotechnics, pp 110–117

  53. Thuadaij P, Pimraksa K, Nuntiya A (2012) Synthesis of high cation exchange capacity faujasite from high calcium fly ash. Aust J Basic Appl Sci 6:194–208

    CAS  Google Scholar 

  54. Porcher F, Souhassou M, Dusausoy Y, Lecomte C (1999) The crystal structure of a low-silica dehydrated NaX zeolite. Eur J Mineral 11(2):333–343

    Article  CAS  Google Scholar 

  55. Imaizumi K, Matsuda N, Otsuka M (2003) Coagulation/phase separation process in the silica/inorganic salt systems (1)—observation of state transformation. J Mater Sci 38(13):2979–2986. https://doi.org/10.1023/A:1024477712033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support, including a PhD scholarship for P. Doumit, provided by Sugar Research Australia (SRA; formally SRDC, Sugar Research Development Corporation) via the SRDC grant SCU03. Financial support was also provided by Australian Biorefining Pty. Ltd., as an industry partner to the SRDC grant SCU03. Many thanks are also extended to the staff and students at the School of Environment Science and Engineering, Southern Cross University, who assisted in the laboratory work for data collection.

Funding

This study was funded by SRDC Grant Number SCU03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Doumit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumit, P., Clark, M.W., Yee, L.H. et al. Response surface statistical optimisation of zeolite-X/silica by hydrothermal synthesis. J Mater Sci 54, 14677–14689 (2019). https://doi.org/10.1007/s10853-019-03913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03913-x

Navigation