Skip to main content
Log in

Facile chemical synthesis of nanosheets self-assembled hierarchical H2WO4 microspheres and their morphology-controlled thermal decomposition into WO3 microspheres

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A controlled acidic precipitation is reported for the direct synthesis of nanosheets self-assembled hierarchical tungstic acid microspheres, and their annealing-dependent thermal conversion into WO3 microstructures is studied for the first time. The synthesis was carried out without the use of any structure directing agents and hydrothermal conditions. The microspheres were found to be consisting of many single-crystalline and highly oriented nanosheets that were hierarchically self-aggregated in spherical form for the minimization of surface energy. An experimentally validated time-dependent formation and growth mechanism was proposed for the development of microspheres. The characterization results indicated that the morphology-preserved thermal decomposition of H2WO4 into WO3 microspheres occurred at 400 °C, whereas a morphology distortion was noticed for the sample synthesized at 600 °C. The increase in annealing temperature further increased the crystallinity of WO3 without changing its monoclinic crystal structure. However, it has a diminishing effect in the specific surface area, pore size and pore volume of the annealed samples. Moreover, the adsorption of methylene blue in aqueous medium was carried out to evaluate its potential environmental application. The WO3 microspheres synthesized at 400 °C showed high adsorption capacity (63 mg/g) compared to the same at 600 °C (56 mg/g). The high activity could be ascribed to the synergistic effects of high surface area, low particle size, porosity, specific morphology and more negative zeta potential. The adsorption further followed pseudo-second-order kinetics with a best fit of the experimental and theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Martínez DS, delaCruz AM, Cuéllar EL (2011) Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl Catal A Gen 398:179–186. https://doi.org/10.1016/j.apcata.2011.03.034

    Article  CAS  Google Scholar 

  2. Luo JY, Cao Z, Chen F, Li L, Lin YR, Liang BW, Zeng QG, Zhang M, He X, Li C (2013) Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets. Appl Surf Sci 287:270–275. https://doi.org/10.1016/j.apsusc.2013.09.139

    Article  CAS  Google Scholar 

  3. Singh NB, Nagpal G, Agrawal S (2018) Rachna, water purification by using adsorbents: a review. Environ Technol Innov 11:187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  4. Jeon S, Yong K (2010) Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment. J Mater Chem 20:10146–10151. https://doi.org/10.1039/C0JM01644F

    Article  CAS  Google Scholar 

  5. Wang J, Zhuang S, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438. https://doi.org/10.1016/j.ccr.2018.07.014

    Article  CAS  Google Scholar 

  6. Zhang S, Li H, Yang Z (2017) Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. J Alloys Compd 722:555–563. https://doi.org/10.1016/j.jallcom.2017.06.095

    Article  CAS  Google Scholar 

  7. Wang CY, Zhang X, Rong Q, Hou NN, Yu HQ (2018) Ammonia sensing by closely packed WO3 microspheres with oxygen vacancies. Chemosphere 204:202–209. https://doi.org/10.1016/j.chemosphere.2018.04.050

    Article  CAS  Google Scholar 

  8. Huang ZF, Song JJ, Pan L, Zhang XW, Wang L, Zou JJ (2015) Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater 27:5309–5327. https://doi.org/10.1002/adma.201501217

    Article  CAS  Google Scholar 

  9. Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Adv Powder Technol 23:211–214. https://doi.org/10.1016/j.apt.2011.02.009

    Article  CAS  Google Scholar 

  10. Zheng JY, Haider Z, Van TK, Pawar AU, Kang MJ, Kim CW, Kang YS (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. Cryst Eng Commun 17:6070–6093. https://doi.org/10.1039/C5CE00900F

    Article  CAS  Google Scholar 

  11. Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528. https://doi.org/10.1002/adma.201601109

    Article  CAS  Google Scholar 

  12. Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434. https://doi.org/10.1016/0022-4596(79)90199-3

    Article  CAS  Google Scholar 

  13. Yang M, Shrestha NK, Schmuki P (2009) Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochem Commun 11:1908–1911. https://doi.org/10.1016/j.elecom.2009.08.014

    Article  CAS  Google Scholar 

  14. Ng C, Ye CH, Ng YH, Amal R (2010) Flower-shaped tungsten oxide with inorganic fullerene-like structure: synthesis and characterization. Cryst Growth Des 10:3794–3801. https://doi.org/10.1021/cg100625m

    Article  CAS  Google Scholar 

  15. Guo Y, Murata N, Ono K, Okazaki T (2005) Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar–O2 gases. J Nanopart Res 7:101. https://doi.org/10.1007/s11051-004-7900-5

    Article  CAS  Google Scholar 

  16. Niklasson GA, Berggren L, Larsson AL (2004) Electrochromic tungsten oxide: the role of defects. Sol Energy Mater Sol Cells 84:315–328. https://doi.org/10.1016/j.solmat.2004.01.045

    Article  CAS  Google Scholar 

  17. Pokhrel S, Birkenstock J, Dianat A, Zimmermann J, Schowalter M, Rosenauer A, Ciacchi LC, Madler L (2015) In situ high temperature X-ray diffraction, transmission electron microscopy and theoretical modeling for the formation of WO3 crystallites. Cryst Eng Commun 17:6985–6998. https://doi.org/10.1039/C5CE00526D

    Article  CAS  Google Scholar 

  18. Ghosh K, Roy A, Tripathi S, Ghule S, Singh AK, Ravishankar N (2017) Insights into nucleation, growth and phase selection of WO3: morphology control and electrochromic properties. J Mater Chem C 5:7307–7316. https://doi.org/10.1039/C7TC01714F

    Article  CAS  Google Scholar 

  19. Pudukudy M, Yaakob Z, Rajendran R (2013) Visible light active novel WO3 nanospheres for methylene blue degradation. Der Pharma Chem 5(6):208–212

    Google Scholar 

  20. Sun S, Watanabe M, Wu J, An Q, Ishihara T (2018) Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity. J Am Chem Soc 140:6474–6482. https://doi.org/10.1021/jacs.8b03316

    Article  CAS  Google Scholar 

  21. Shen Y, Wang W, Chen X, Zhang B, Wei D, Gao S, Cui B (2016) Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. J Mater Chem A 4:1345–1352. https://doi.org/10.1039/C5TA08170J

    Article  CAS  Google Scholar 

  22. Zhou Y, Hu XC, Liu XH, Wen HR (2015) Core–shell hierarchical WO2/WO3 microspheres as an electrocatalyst support for methanol electrooxidation. Chem Commun 51:15297–15299. https://doi.org/10.1039/C5CC06603D

    Article  CAS  Google Scholar 

  23. Xu C, Wang X, Xu G, Chen Y, Dai L (2018) Facile construction of leaf-like WO3 nanoflakes decorated on g-C3N4 towards efficient oxidation of alcohols under mild conditions. New J Chem 42:16523–16532. https://doi.org/10.1039/C8NJ03328E

    Article  CAS  Google Scholar 

  24. Wang C, Feng C, Wang M, Li X, Cheng P, Zhang H, Sun Y, Sun P, Lu G (2015) One-pot synthesis of hierarchical WO3 hollow nanospheres and their gas sensing properties. RSC Adv 5:29698–29703. https://doi.org/10.1039/C5RA01121C

    Article  CAS  Google Scholar 

  25. Dong P, Hou G, Xi X, Shao R, Dong F (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539–557. https://doi.org/10.1039/C6EN00478D

    Article  CAS  Google Scholar 

  26. Yu Y, Zeng W, Zhang Z, Cai Y, Zhang H (2017) Hierarchical WO3·H2O porous microsphere: hydrothermal synthesis, structure and gas-sensing performance. Mater Lett 186:119–122. https://doi.org/10.1016/j.matlet.2016.09.106

    Article  CAS  Google Scholar 

  27. Wei Z, Zhou Q, Lu Z, Xu L, Gui Y, Tang C (2019) Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties. Phys E Low Dimens Syst Nanostruct 109:253–260. https://doi.org/10.1016/j.physe.2019.01.006

    Article  CAS  Google Scholar 

  28. Huang Y, Li Y, Zhang G, Liu W, Li D, Chen R, Zheng F, Ni H (2019) Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors. J Alloys Compd 778:603–611. https://doi.org/10.1016/j.jallcom.2018.11.212

    Article  CAS  Google Scholar 

  29. Shen Y, Chen X, Wang W, Gong Y, Chen S, Liu J, Wei D, Meng D, San X (2016) Complexing surfactants-mediated hydrothermal synthesis of WO3 microspheres for gas sensing applications. Mater Lett 163:150–153. https://doi.org/10.1016/j.matlet.2015.10.067

    Article  CAS  Google Scholar 

  30. Nagarjuna R, Challagulla S, Sahu P, Roy S, Ganesan R (2017) Polymerizable sol–gel synthesis of nano-crystalline WO3 and its photocatalytic Cr(VI) reduction under visible light. Adv Powder Technol 28:3265–3273. https://doi.org/10.1016/j.apt.2017.09.030

    Article  CAS  Google Scholar 

  31. Zhang Y, Zeng W, Li Y (2019) New insight into gas sensing performance of nanorods assembled and nanosheets assembled hierarchical WO3·H2O structures. Mater Lett 235:49–52. https://doi.org/10.1016/j.matlet.2018.10.012

    Article  CAS  Google Scholar 

  32. Adhikari S, Chandra KS, Kim DH, Madras G, Sarkar D (2018) Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.03.024

    Article  Google Scholar 

  33. Cao S, Chen H (2017) Nanorods assembled hierarchical urchin-like WO3 nanostructures: hydrothermal synthesis, characterization, and their gas sensing properties. J Alloy Compd 702:644–648. https://doi.org/10.1016/j.jallcom.2017.01.232

    Article  CAS  Google Scholar 

  34. Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911. https://doi.org/10.1002/adma.201200469

    Article  CAS  Google Scholar 

  35. Zhai C, Zhu M, Jiang L, Yang T, Zhao Q, Luo Y, Zhang M (2019) Fast triethylamine gas sensing response properties of nanosheets assembled WO3 hollow microspheres. Appl Surf Sci 463:1078–1084. https://doi.org/10.1016/j.apsusc.2018.09.049

    Article  CAS  Google Scholar 

  36. Shen Y, Bi H, Li T, Zhong X, Chen X, Fan A, Wei D (2018) Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl Surf Sci 434:922–931. https://doi.org/10.1016/j.apsusc.2017.11.046

    Article  CAS  Google Scholar 

  37. Yu H, Li J, Li Z, Tian Y, Yang Z (2019) Enhanced formaldehyde sensing performance based on Ag@ WO3 2D nanocomposite. Powder Technol 343:1–10. https://doi.org/10.1016/j.powtec.2018.11.008

    Article  CAS  Google Scholar 

  38. Zhang H, Wang J, Liu X, Ma X, Zhu W (2018) Hydrothermal synthesis of pure-phase hierarchical porous hexagonal WO3 microspheres as highly efficient support for Pd catalyst for hydrogenation. Particuology 41:126–132. https://doi.org/10.1016/j.partic.2018.01.014

    Article  CAS  Google Scholar 

  39. Chen Z, Wang J, Zhai G, An W, Men Y (2017) Hierarchical yolk–shell WO3 microspheres with highly enhanced photoactivity for selective alcohol oxidations. Appl Catal B Environ 218:825–832. https://doi.org/10.1016/j.apcatb.2017.07.027

    Article  CAS  Google Scholar 

  40. Wang Z, Chu D, Wang L, Wang L, Hu W, Chen X, Yang H, Sun J (2017) Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity. Appl Surf Sci 396:492–496. https://doi.org/10.1016/j.apsusc.2016.10.181

    Article  CAS  Google Scholar 

  41. Wang H, Yang H, Chu D, Ge G, Sun J, Hu W, Chen X, Wang W, Xue Y (2017) Synthesis of 3D hierarchical WO3·0.33H2O microsphere architectures with enhanced visible-light-driven photocatalytic activity. Mater Lett 193:5–8. https://doi.org/10.1016/j.matlet.2017.01.048

    Article  CAS  Google Scholar 

  42. Li T, Zeng W, Miao B, Zhao S, Li Y, Zhang H (2015) Urchinlike hex-WO3 microspheres: hydrothermal synthesis and gas-sensing properties. Mater Lett 144:106–109. https://doi.org/10.1016/j.matlet.2015.01.019

    Article  CAS  Google Scholar 

  43. Tong H, Xu Y, Cheng X, Zhang X, Gao S, Zhao H, Huo L (2016) One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance. Electrochim Acta 210:147–154. https://doi.org/10.1016/j.electacta.2016.05.154

    Article  CAS  Google Scholar 

  44. Shen Y, Ding D, Deng Y (2011) Fabrication and characterization of WO3 flocky microspheres induced by ethanol. Powder Technol 211:114–119. https://doi.org/10.1016/j.powtec.2011.04.005

    Article  CAS  Google Scholar 

  45. Xiao T, Tang Z, Yang Y, Tang L, Zhou Y, Zou Z (2018) In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl Catal B Environ 220:417–428. https://doi.org/10.1016/j.apcatb.2017.08.070

    Article  CAS  Google Scholar 

  46. Li Y, Chen L, Guo Y, Sun X, Wei Y (2012) Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark. Chem Eng J 181–182:734–739. https://doi.org/10.1016/j.cej.2010.12.007

    Article  CAS  Google Scholar 

  47. Lee CY, Kim SJ, Hwang IS, Lee JH (2009) Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sens Actuators B Chem 142:236–242. https://doi.org/10.1016/j.snb.2009.08.031

    Article  CAS  Google Scholar 

  48. Zhang Y, He W, Zhao H, Li P (2013) Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95:30–34. https://doi.org/10.1016/j.vacuum.2013.02.005

    Article  CAS  Google Scholar 

  49. Yang L, Si Z, Weng D, Yao Y (2014) Synthesis, characterization and photocatalytic activity of porous WO3/TiO2 hollow microspheres. Appl Surf Sci 313:470–478. https://doi.org/10.1016/j.apsusc.2014.05.230

    Article  CAS  Google Scholar 

  50. Zhang L, Tang X, Lu Z, Wang Z, Li L, Xiao Y (2011) Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres. Appl Surf Sci 258:1719–1724. https://doi.org/10.1016/j.apsusc.2011.10.022

    Article  CAS  Google Scholar 

  51. Song K, Liu X, Tian C, Deng H, Wang J, Su X (2019) Oxygen defect-rich WO3−x nanostructures with high photocatalytic activity for dehydration of isopropyl alcohol to propylene. Surf Interfaces 14:245–250. https://doi.org/10.1016/j.surfin.2018.11.002

    Article  CAS  Google Scholar 

  52. Park SM, Nam C (2017) Dye-adsorption properties of WO3 nanorods grown by citric acid assisted hydrothermal methods. Ceram Int 43:17022–17025. https://doi.org/10.1016/j.ceramint.2017.09.111

    Article  CAS  Google Scholar 

  53. Hidayat D, Purwanto A, Wang WN, Okuyama K (2010) Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Mater Res Bull 45:165–173. https://doi.org/10.1016/j.materresbull.2009.09.025

    Article  CAS  Google Scholar 

  54. Liu X, Jin A, Jia Y, Xia T, Deng C, Zhu M, Chen C, Chen X (2017) Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl Surf Sci 405:359–371. https://doi.org/10.1016/j.apsusc.2017.02.025

    Article  CAS  Google Scholar 

  55. Sun S, Lu T, Chang X, Hu X, Dong L, Yin Y (2016) Flexible electrochromic device based on WO3·H2O nanoflakes synthesized by a facile sonochemical method. Mater Lett 185:319–332. https://doi.org/10.1016/j.matlet.2016.08.154

    Article  CAS  Google Scholar 

  56. Ahmadi M, Guinel MJF (2014) Synthesis and characterization of tungstite (WO3·H2O) nanoleaves and nanoribbons. Acta Mater 69:203–209. https://doi.org/10.1016/j.actamat.2014.01.055

    Article  CAS  Google Scholar 

  57. Huang J, Xiao L, Yang X (2013) WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater Res Bull 48:2782–2785. https://doi.org/10.1016/j.materresbull.2013.04.022

    Article  CAS  Google Scholar 

  58. Ke J, Zhou H, Liu J, Duan X, Zhang H, Liu S, Wang S (2018) Crystal transformation of 2D tungstic acid H2WO4–WO3 for enhanced photocatalytic water oxidation. J Colloid Interface Sci 514:576–583. https://doi.org/10.1016/j.jcis.2017.12.066

    Article  CAS  Google Scholar 

  59. Pudukudy M, Yaakob Z (2014) Facile solid state synthesis of ZnO hexagonal nanogranules with excellent photocatalytic activity. Appl Surf Sci 292:520–530. https://doi.org/10.1016/j.apsusc.2013.12.004

    Article  CAS  Google Scholar 

  60. Guéry C, Choquet C, Dujeancourt F, Tarascon JM, Lassègues JC (1997) Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates. J Solid State Electrochem 1:199–207. https://doi.org/10.1007/s100080050049

    Article  Google Scholar 

  61. Cao J, Luo B, Lin H, Xu B, Chen S (2012) Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B Environ 111–112:288–296. https://doi.org/10.1016/j.apcatb.2011.10.010

    Article  CAS  Google Scholar 

  62. Hatel R, Baitoul M (2019) A novel approach to synthesize nanostructured WO3 and graphene/WO3 nanocomposites: structural and morphological investigations. Mater Chem Phys 225:169–173. https://doi.org/10.1016/j.matchemphys.2018.12.056

    Article  CAS  Google Scholar 

  63. Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3∙ xH2O tungsten trioxide tydrates. J Solid State Chem 67:235–247. https://doi.org/10.1016/0022-4596(87)90359-8

    Article  CAS  Google Scholar 

  64. Chen J, Xiao X, Wang Y, Ye Z (2019) Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity. J Alloys Compd 777:325–334. https://doi.org/10.1016/j.jallcom.2018.10.404

    Article  CAS  Google Scholar 

  65. Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sen Actuator B Chem 225:535–543. https://doi.org/10.1016/j.snb.2015.11.044

    Article  CAS  Google Scholar 

  66. Zhang H, Liu T, Huang L, Guo W, Liu D, Zeng W (2012) Hydrothermal synthesis of assembled sphere-like WO3 architectures and their gas-sensing properties. Phys E 44:1467–1472. https://doi.org/10.1016/j.physe.2012.03.013

    Article  CAS  Google Scholar 

  67. Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K (1987) Formation and transformation of WO3 prepared from alkoxide. J Am Ceram Soc 70:C94–C96. https://doi.org/10.1111/j.1151-2916.1987.tb05010.x

    Article  Google Scholar 

  68. Wang ZY, Sun P, Yang TL, Gao Y, Li XW, Lu GY, Du Y (2013) Flower-like WO3 architectures synthesized via a microwave-assisted method and their gas sensing properties. Sens Actuators B Chem 186:734–740. https://doi.org/10.1016/j.snb.2013.06.015

    Article  CAS  Google Scholar 

  69. Salkar AV, Naik AP, Joshi VS, Haram SK, Morajkar PP (2018) Designing a 3D nanoporous network via self-assembly of WO3 nanorods for improved electrocapacitive performance. Cryst Eng Commun 20:6683–6694. https://doi.org/10.1039/C8CE01257A

    Article  CAS  Google Scholar 

  70. Yang Z, Zhang W, Wang Q, Song X, Qian Y (2006) Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3. Chem Phys Lett 418:46–49. https://doi.org/10.1016/j.cplett.2005.10.076

    Article  CAS  Google Scholar 

  71. Granqvist CG (1995) Chapter 7: tungsten oxide films: ion intercalation/deintercalation studied by physical techniques. In: Handbook of inorganic electrochromic materials, pp. 111–137. https://doi.org/10.1016/b978-044489930-9/50006-4

  72. Liang L, Zhang J, Zhou Y, Xie J, Zhang X, Guan M, Pan B, Xie Y (2013) High performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci Rep 3:1936. https://doi.org/10.1038/srep01936

    Article  Google Scholar 

  73. Xiao F, Miao Q, Wei S, Liang W, Fan X, Pan K, Xu L (2018) Hydrothermal synthesis of nanoplates assembled hierarchical h-WO3 microspheres and phase evolution in preparing cubic Zr(Y)O2-doped tungsten powders. Adv Powder Technol 29:2633–2643. https://doi.org/10.1016/j.apt.2018.07.011

    Article  CAS  Google Scholar 

  74. Nogueira HIS, Cavaleiro AMV, Rocha J, Trindade T, de Jesus JDP (2004) Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Mater Res Bull 39:683–693. https://doi.org/10.1016/j.materresbull.2003.11.004

    Article  CAS  Google Scholar 

  75. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636. https://doi.org/10.1039/C5CS00838G

    Article  CAS  Google Scholar 

  76. Pudukudy M, Yaakob Z, Rajendran R (2014) Facile synthesis of mesoporous α-Mn2O3 microspheres via morphology conserved thermal decomposition of MnCO3 microspheres. Mater Lett 136:85–89. https://doi.org/10.1016/j.matlet.2014.08.019

    Article  CAS  Google Scholar 

  77. Zou YC, Luo Y, Wen N, Ye TN, Xu CY, Yu JG, Wang FQ, Li GD, Zhao YN (2014) Fabricating BaZrO3 hollow microspheres by a simple reflux method. New J Chem 38:2548–2553. https://doi.org/10.1039/C3NJ01415K

    Article  CAS  Google Scholar 

  78. Chen D, Ye J (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater 18:1922–1928. https://doi.org/10.1002/adfm.200701468

    Article  CAS  Google Scholar 

  79. Kasi G, Viswanathan K, Seo J (2019) Effect of annealing temperature on the morphology and anti-bacterial activity of Mg-doped zinc oxide nanorods. Ceram Int 45:3230–3238. https://doi.org/10.1016/j.ceramint.2018.10.226

    Article  CAS  Google Scholar 

  80. Elnouby M, Kuruma K, Nakamura E, Abe H, Suzuki Y, Naito M (2013) Facile synthesis of WO3·H2O square nanoplates via a mild aging of ion-exchanged precursor. J Ceram Soc Jpn 121:907–911. https://doi.org/10.2109/jcersj2.121.907

    Article  CAS  Google Scholar 

  81. Miao B, Zeng W, Xu S, Zeng S, Chen Y, Wu S (2013) Synthesis and controlled growth of monodisperse WO3·H2O square nanoplates with the assistance of malic acid. Mater Lett 113:13–16. https://doi.org/10.1016/j.matlet.2013.09.030

    Article  CAS  Google Scholar 

  82. Miao B, Zeng W, Mu Y, Yu W, Hussain S, Xu S, Zhang H, Li T (2015) Controlled synthesis of monodisperse WO3·H2O square nanoplates and their gas sensing properties. Appl Surf Sci 349:380–386. https://doi.org/10.1016/j.apsusc.2015.04.226

    Article  CAS  Google Scholar 

  83. Liu Q, Ding J, Chai Y, Zhao J, Cheng S, Zong B, Da WL (2015) Unprecedented enhancement in visible-light-driven photoactivity of modified graphitic C3N4 by coupling with H2WO4. J Environ Chem Eng 3:1072–1080. https://doi.org/10.1016/j.jece.2015.02.016

    Article  CAS  Google Scholar 

  84. Ma J, Zhang J, Wang S, Wang T, Lian J, Duan X, Zheng W (2011) Topochemical preparation of WO3 nanoplates through precursor H2WO4 and their gas-sensing performances. J Phys Chem C 115:18157–18163. https://doi.org/10.1021/jp205782a

    Article  CAS  Google Scholar 

  85. Shinde PA, Lokhande AC, Patil AM, Lokhande CD (2019) Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. J Alloys Compd 770:1130–1137. https://doi.org/10.1016/j.jallcom.2018.08.194

    Article  CAS  Google Scholar 

  86. Shinde PA, Lokhande VC, Patil AM, Ji T, Lokhande CD (2018) Single -step hydrothermal synthesis of WO3–MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor Int. J Hydrogen Energy 43:2869–2880. https://doi.org/10.1016/j.ijhydene.2017.12.093

    Article  CAS  Google Scholar 

  87. Zheng F, Xi C, Xu J, Yu Y, Yang W, Hu P, Li Y, Zhen Q, Bashir S, Liu JL (2019) Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor. J Alloys Compd 772:933–942. https://doi.org/10.1016/j.jallcom.2018.09.085

    Article  CAS  Google Scholar 

  88. Wang Y, Zhang F, Zhao G, Zhao Y, Ren Y, Zhang H, Zhang L, Du J, Han Y, Kang DJ (2019) Porous WO3 monolith-based photoanodes for high-efficient photoelectrochemical water splitting. Ceram Int 45:7302–7308. https://doi.org/10.1016/j.ceramint.2019.01.012

    Article  CAS  Google Scholar 

  89. Patil SM, Deshmukh SP, More KV, Shevale VB, Mullani SB, Dhodamani AG, Delekar SD (2019) Sulfated TiO2/WO3 nanocomposite: an efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation. Mater Chem Phys 225:247–255. https://doi.org/10.1016/j.matchemphys.2018.12.041

    Article  CAS  Google Scholar 

  90. Nagy D, Nagy D, Szilagyi IM, Fan X (2016) Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv 6:33743–33754. https://doi.org/10.1039/c5ra26582g

    Article  CAS  Google Scholar 

  91. Garoufalis CS, Poulopoulos P, Bouropoulos N, Barnasas A, Baskoutas S (2017) Growth and optical properties of Fe2O3 thin films: a study of quantum confinement effects by experiment and theory. Phys E 89:67–71. https://doi.org/10.1016/j.physe.2017.02.006

    Article  CAS  Google Scholar 

  92. Pudukudy M, Hetieqa A, Yaakob Z (2014) Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures. Appl Surf Sci 319:221–229. https://doi.org/10.1016/j.apsusc.2014.07.050

    Article  CAS  Google Scholar 

  93. Choi HW, Kim EJ, Hahn SH (2010) Photocatalytic activity of Au-buffered WO3 thin films prepared by RF magnetron sputtering. Chem Eng J 161:285–288. https://doi.org/10.1016/j.cej.2010.01.050

    Article  CAS  Google Scholar 

  94. Liu X, Jiang J, Jia Y, Qiu J, Xia T, Zhang Y, Li Y, Chen X (2017) Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO3(La, Cr)-decorated WO3 nanosheets. Appl Surf Sci 412:279–289. https://doi.org/10.1016/j.apsusc.2017.03.226

    Article  CAS  Google Scholar 

  95. Morales W, Cason M, Aina O, deTacconi NR, Rajeshwar K (2008) Combustion synthesis and characterization of nanocrystalline WO3. J Am Chem Soc 130:6318–6319. https://doi.org/10.1021/ja8012402

    Article  CAS  Google Scholar 

  96. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York. https://cds.cern.ch/record/643993/files/0471303925_TOC.pdf

  97. Anik M, Cansizoglu T (2006) Dissolution kinetics of WO3 in acidic solutions. J Appl Electrochem 36:603–608. https://doi.org/10.1007/s10800-006-9113-3

    Article  CAS  Google Scholar 

  98. Macdonald DD, Sikora E, Sikora J (1998) The kinetics of growth of the passive film on tungsten in acidic phosphate solutions. Electrochim Acta 43:2851–2861. https://doi.org/10.1016/S0013-4686(98)00026-7

    Article  CAS  Google Scholar 

  99. Adhikari S, Mandal S, Sarkar D, Kim DH, Madras G (2017) Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl Surf Sci 420:472–482. https://doi.org/10.1016/j.apsusc.2017.05.191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Postdoctoral Research Funding of Kunming University of Science and Technology (Grant No. 10988880), China Postdoctoral Science Foundation (Grant No. 2019M653845XB) and National Natural Science Foundation of China (Grant No. 21566014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Pudukudy or Qingming Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudukudy, M., Jia, Q. Facile chemical synthesis of nanosheets self-assembled hierarchical H2WO4 microspheres and their morphology-controlled thermal decomposition into WO3 microspheres. J Mater Sci 54, 13914–13937 (2019). https://doi.org/10.1007/s10853-019-03874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03874-1

Navigation