Skip to main content
Log in

Hot-press sintering K0.5Na0.5NbO3–0.5 mol%Al2O3 ceramics with enhanced ferroelectric and piezoelectric properties

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free ceramics K0.5Na0.5NbO3–0.5 mol%Al2O3 with simple composition were prepared via the hot-press sintering. The ceramics exhibit dense microstructure, fine grains, and pure orthorhombic structure. Via the hot-press sintering as well as adding 0.5 mol%Al2O3 into K0.5Na0.5NbO3, piezoelectric and ferroelectric properties of the obtained ceramics were obviously enhanced. The ceramics exhibit high remnant polarization Pr = 26.8 μC/cm2 and piezoelectric constant d33 = 137 pC/N. The maximum unipolar strain is 0.17%, and the converse piezoelectric coefficient d33* is 212 pm/V under electric field E = 80 kV/cm. Under E = 50 kV/cm, the Pr increases from 21.6 to 22.2 μC/cm2, and the d33* increases from 223 to 322 pm/V as the temperature increases from room temperature to 170 °C. The ex situ measurement result demonstrates that d33 still keeps a high value of 97 pC/N as the annealing temperature increases to 380 °C, implying excellent thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rödel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  2. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  Google Scholar 

  3. Wang Y, Zhu W, Sun Q, Tan L (2019) Effects of A/B-site dopants on microstructure and domain configuration of potassium sodium niobate lead-free piezoelectric ceramics. J Alloys Compd 787:407–413

    Article  Google Scholar 

  4. Wu JG, Xiao DQ, Zhu JG (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  Google Scholar 

  5. Li P, Zhai JW, Shen B, Zhang SJ, Li XL, Zhu FY, Zhang XM (2018) Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv Mater 30:1705171

    Article  Google Scholar 

  6. Yu ZD, Chen XM, Lian HL, Zhang Q, Wu WX (2018) Microstructure and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics sintered in low pO2 atmosphere. J Mater Sci Mater Electron 29:19043–19051. https://doi.org/10.1007/s10854-018-0030-0

    Article  Google Scholar 

  7. Rubio-Marcos F, Romero JJ, Navarro-Rojero MG, Fernandez JF (2009) Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J Eur Ceram Soc 29:3045–3052

    Article  Google Scholar 

  8. Lv X, Li J, Men TL, Wu J, Zhang XX, Wang K, Zhu J (2018) High-performance 0–3 type niobate-based lead-free piezoelectric composite ceramics with ZnO inclusions. ACS Appl Mater Interfaces 10:30566–30573

    Article  Google Scholar 

  9. Malic B, Bernard J, Bencan A, Kosec M (2008) Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J Eur Ceram Soc 28:1191–1196

    Article  Google Scholar 

  10. Du H, Liu D, Tang F, Zhu D, Zhou W, Qu S (2007) Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J Am Ceram Soc 90:2824–2829

    Article  Google Scholar 

  11. Takao H, Saito Y, Aoki Y, Horibuchi K (2006) Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 89:1951–1956

    Article  Google Scholar 

  12. Park HY, Choi JY, Choi MK, Cho KH, Nahm S, Lee HG, Kang HW (2008) Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J Am Ceram Soc 91:2374–2377

    Article  Google Scholar 

  13. Lin D, Zheng Q, Kwok KW, Xu C, Yang C (2010) Dielectric and piezoelectric properties of MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 lead-free ceramics. J Mater Sci Mater Electron 21:649–655. https://doi.org/10.1007/s10854-009-9971-7

    Article  Google Scholar 

  14. Wang X, Zheng T, Wu J, Xiao D, Zhu J, Wang H, Gu Y (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K,Na)NbO3-based ceramics with different additives. J Mater Chem A 3:15951–15961

    Article  Google Scholar 

  15. Kim YM, Kim JC, Ur SC, Kim IH (2006) Effects of Al2O3 on the piezoelectric properties of Pb(Mn1/3Nb2/3)O3–PbZrO3–PbTiO3 ceramics. J Electroceram 16:347–350

    Article  Google Scholar 

  16. Zheng T, Wu J, Xiao D, Zhu J (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    Article  Google Scholar 

  17. Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28:8519–8523

    Article  Google Scholar 

  18. Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher J, Benčan A (2015) Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials 8:8117–8146

    Article  Google Scholar 

  19. Zhang BP, Li JF, Wang K, Zhang H (2006) Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering. J Am Ceram Soc 89:1605–1609

    Article  Google Scholar 

  20. Bafandeh MR, Gharahkhani R, Lee JS (2014) Comparison of sintering behavior and piezoelectric properties of (K,Na)NbO3-based ceramics sintered in conventional and microwave furnace. Mater Chem Phys 143:1289–1295

    Article  Google Scholar 

  21. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45:209–213

    Article  Google Scholar 

  22. Qin Y, Zhang J, Yao W, Wang C, Zhang S (2015) Domain structure of potassium–sodium niobate ceramics before and after poling. J Am Ceram Soc 98:1027–1033

    Article  Google Scholar 

  23. Rahaman MN (2007) Sintering of ceramics. CRC Press, New York

    Book  Google Scholar 

  24. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681

    Article  Google Scholar 

  25. Lv X, Wu J, Xiao D, Zhu J, Zhang J, Zhang XX (2018) Modifying temperature stability of (K,Na)NbO3 ceramics through phase boundary. Adv Electron Mater 4:1800205

    Article  Google Scholar 

  26. Wang R, Wang K, Yao F, Li JF, Schader FH, Webber KG, Rödel J (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98:2177–2182

    Article  Google Scholar 

  27. Wang D, Hussaina F, Khesroa A, Feteirac A, Tian Y, Zhao Q, Reaney IM (2017) Composition and temperature dependence of structure and piezoelectricity in (1 − x)(K1−yNay)NbO3−x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 100:627–637

    Article  Google Scholar 

  28. Pan Z, Chen J, Fan L, Zhang J, Zhang S, Huang Y, Xing X (2015) Enhanced piezoelectric properties and thermal stability in the (K0.5Na0.5)NbO3: ZnO lead-free piezoelectric composites. J Am Ceram Soc 98:3935–3941

    Article  Google Scholar 

  29. Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li JF (2018) High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 11:3531–3539

    Article  Google Scholar 

  30. Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10:335–339

    Article  Google Scholar 

  31. Su YL, Chen XM, Yu ZD, Lian HL, Zheng DD, Peng JH (2017) Comparative study on microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free ceramics prepared via two different sintering methods. J Mater Sci 52:2934–2943. https://doi.org/10.1007/s10853-016-0587-z

    Article  Google Scholar 

  32. Adhikari P, Mazumder R, Sahoo GK (2016) Electrical and mechanical properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3(BZT–BCT) lead free ferroelectric ceramics reinforced with nano-sized Al2O3. Ferroelectrics 490:60–69

    Article  Google Scholar 

  33. Ahn CW, Karmarkar M, Viehland D, Kang DH, Bae KS, Priya S (2008) Low temperature sintering and piezoelectric properties of CuO-doped (K0.5Na0.5)NbO3 ceramics. Ferroelectr Lett 35:66–72

    Article  Google Scholar 

  34. Pang X, Qiu J, Zhu K, Du J (2012) Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J Mater Sci Mater Electron 23:1083–1086. https://doi.org/10.1007/s10854-011-0551-2

    Article  Google Scholar 

  35. Zuo R, Rödel J, Chen R, Li L (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89:2010–2015

    Article  Google Scholar 

  36. Eitel RE, Shrout TR, Randall CA (2007) Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J Appl Phys 99:124110

    Article  Google Scholar 

  37. Zhou JS, Wang K, Yao FZ, Zheng T, Wu J, Xiao D, Li JF (2015) Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 3:8780–8787

    Article  Google Scholar 

  38. Zhang S, Xia R, Shrout TR, Zang G, Wang J (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Article  Google Scholar 

  39. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  40. Thakur OP, Prakash C, James AR (2009) Enhanced dielectric properties in modified barium titanate ceramics through improved processing. J Alloys Compd 470:548–551

    Article  Google Scholar 

  41. Qiao XS, Chen XM, Lian HL, Chen WT, Zhou JP, Liu P (2016) Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J Am Ceram Soc 99:198–205

    Article  Google Scholar 

  42. Zhu R, Fang B, Zhao X, Zhang S, Chen Z, Ding J, Luo H (2018) Enhancing piezoelectric properties of high-Curie temperature PMN-PH-PT piezoelectric ceramics by citrate method. J Alloys Compd 735:496–509

    Article  Google Scholar 

  43. Huan Y, Wang X, Li L, Koruza J (2015) Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO3-based ceramics. Appl Phys Lett 107:202903

    Article  Google Scholar 

  44. Yang G, Yue Z, Ji Y, Li L (2008) Dielectric nonlinearity of stack piezoelectric actuator under the combined uniaxial mechanical and electric loads. J Appl Phys 104:074116

    Article  Google Scholar 

  45. Qiao XS, Chen XM, Lian HL, Zhou JP, Liu P (2016) Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J Eur Ceram Soc 36:3995–4001

    Article  Google Scholar 

  46. Vendrell X, García JE, Bril X, Ochoa DA, Mestres L, Dezanneau G (2015) Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping. J Eur Ceram Soc 35:125–130

    Article  Google Scholar 

  47. Peng B, Yue Z, Li L (2011) Evaluation of domain wall motion during polymorphic phase transition in (K,Na)NbO3-based piezoelectric ceramics by nonlinear response measurements. J Appl Phys 109:054107

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shaanxi Province Science and Technology Foundation (2018JM1009), Fundamental Research Funds for the Central Universities (Nos. GK201803017, GK201901005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Zd., Chen, Xm., Su, Yl. et al. Hot-press sintering K0.5Na0.5NbO3–0.5 mol%Al2O3 ceramics with enhanced ferroelectric and piezoelectric properties. J Mater Sci 54, 13457–13466 (2019). https://doi.org/10.1007/s10853-019-03850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03850-9

Navigation