Skip to main content
Log in

Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene-based transparent conductive films (TCFs) are promising alternative to indium tin oxide owing to their high transmittance and conductivity. Graphene films were directly deposited on quartz substrates by assisted catalysis of Cu nanoparticles in ambient pressure chemical vapor deposition. Growth conditions, including the concentration of Cu nanoparticles as catalyst, flow rate of CH4, temperature and growth time, were systematically investigated to optimize the quality and performance of graphene TCFs. With the optimized growth conditions, the obtained graphene TCFs exhibit good performance with sheet resistance of 2.48 kΩ sq−1 at transmittance of 82.83%. With this method, graphene TCFs with good performance were obtained without the need of a complex transfer process of graphene, opening a considerable route toward fabricating graphene TCFs on dielectric substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210:95–108

    Article  Google Scholar 

  2. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  Google Scholar 

  3. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    Article  Google Scholar 

  4. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216

    Article  Google Scholar 

  5. Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11(3):203–207

    Article  Google Scholar 

  6. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  Google Scholar 

  7. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  8. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    Article  Google Scholar 

  9. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  Google Scholar 

  10. Chen S, Cai W, Chen D, Ren Y, Li X, Zhu Y, Kang J, Ruoff RS (2010) Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New J Phys 12(12):125011

    Article  Google Scholar 

  11. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091

    Article  Google Scholar 

  12. Park S, An J, Suk JW, Ruoff RS (2010) Graphene-based actuators. Small 6(2):210–212

    Article  Google Scholar 

  13. Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8(1):950–956

    Article  Google Scholar 

  14. Chen ZT, Guo XL, Zhua L, LiL Liu YY, Zhao L, Zhang WJ, Chen J, Zhang Y, Zhao YH (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):209–214

    Article  Google Scholar 

  15. Sun J, Chen Z, Yuan L, Chen YB, Ning J, Liu SW, Ma DL, Song XJ, Priydarshi MK, Bachmatiuk A, Rümmeli MH, Ma TB, Zhi LJ, Huang LB, Zhang YF, Liu ZF (2016) Direct-chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 10(2016):11136–11144

    Article  Google Scholar 

  16. Zhang ZK, Du JH, Zhang DD, Sun HD, Yin LC, Ma LP, Chen JS, Ma DG, Cheng HM, Ren WC (2017) Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun 8:14560

    Article  Google Scholar 

  17. Park IJ, Kim TI, Kang S, Shim GW, Woo Y, Kim TS, Choi SY (2018) Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10:16069–16078

    Article  Google Scholar 

  18. Park IJ, Kim TI, Cho IT, Song CW, Yang JW, Park H, Cheong WS, Im SG, Lee JH, Choi SY (2017) Graphene electrode with tunable charge transport in thin-film transistors. Nano Res 11:274–286

    Article  Google Scholar 

  19. Loh KP, Tong SW, Wu JS (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138(4):1095–1102

    Article  Google Scholar 

  20. Du JH, Jin H, Zhang ZK, Zhang DD, Jia S, Ma LP, Ren WC, Cheng HM, Burn PL (2017) Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer. Nanoscale 9:251–257

    Article  Google Scholar 

  21. Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482

    Article  Google Scholar 

  22. Peng Y, Liu ZK, Tai QD, Liu SH (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27(24):3632–3638

    Article  Google Scholar 

  23. Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung HS, Choi M (2017) Super flexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci 10:337–345

    Article  Google Scholar 

  24. Notte LL, Bianco GV, Palma AL, Carlo AD, Bruno G, Reale A (2018) Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon 129:878–883

    Article  Google Scholar 

  25. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  Google Scholar 

  26. Chen CS, Hsieh CK (2014) An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films 570:595–598

    Article  Google Scholar 

  27. Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Article  Google Scholar 

  28. Zhang J, Hu P, Wang X, Wang Z, Liu D, Yang B, Cao W (2012) CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J Mater Chem 22(35):18283–18290

    Article  Google Scholar 

  29. Kobayashia T, Bando M, Kimura N, Shimizu K, Kadono K (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112

    Article  Google Scholar 

  30. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363

    Article  Google Scholar 

  31. Golanski L, Rouchon D, Okuno H, Fugier P (2016) Graphene monolayer produced on Pt reusable substrates for transparent conductive electrodes applications. Int J Nanotechnol 13(8–9):678–684

    Article  Google Scholar 

  32. Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh (111) following different growth mechanisms. Small 9(8):1360–1366

    Article  Google Scholar 

  33. Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990

    Article  Google Scholar 

  34. Bi H, Sun S, Huang F, Xie X, Jiang M (2012) Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J Mater Chem 22(2):411–416

    Article  Google Scholar 

  35. Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5(10):8187–8192

    Article  Google Scholar 

  36. Kaplas T, Sharma D, Svirko Y (2012) Few-layer graphene synthesis on a dielectric substrate. Carbon 50(4):1503–1509

    Article  Google Scholar 

  37. Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548

    Article  Google Scholar 

  38. Wang Z, Xue Z, Zhang M, Wang Y, Xie X, Chu PK, Zhou P, Di Z, Wang X (2017) Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 13(28):1700929

    Article  Google Scholar 

  39. Teng PY, Lu CC, Hasegawa KA, Lin YC, Yeh CH, Suenaga K, Chiu PW (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384

    Article  Google Scholar 

  40. Zhang C, Man BY, Yang C, Jiang SZ, Liu M, Chen CS, Xu SC, Sun ZC, Gao XG, Chen XJ (2013) Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system. Nanotechnology 24(39):395603

    Article  Google Scholar 

  41. Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582

    Article  Google Scholar 

  42. Han SS, Yang F, Liu LY, Zhou M, Shan YK, Li DZ (2017) Direct growth of graphene on different templates to fabricate special shapes of graphene by remote catalyzation of Cu nanoparticles. J Mater Sci Technol 33:800–806

    Article  Google Scholar 

  43. Han SS, Liu LY, Shan YK, Yang F, Li DZ (2017) Research of graphene/antireflection nanostructure composite transparent conducting films. J Inorg Mater 32:197–202

    Article  Google Scholar 

  44. Liu LY, Cheng Y, Zhang XL, Shan YK, Zhang X, Wang WY, Li DZ (2017) Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf Coat Technol 325:611–616

    Article  Google Scholar 

  45. Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87

    Article  Google Scholar 

  46. Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B (2014) The role of the gas phase in graphene formation by CVD on copper. Chem Vap Deposition 20:51–58

    Article  Google Scholar 

  47. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88(1–3):163106

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from National Natural Science Foundation of China (No. 61205177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Liu, L., Zhang, X. et al. Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles. J Mater Sci 54, 10312–10324 (2019). https://doi.org/10.1007/s10853-019-03621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03621-6

Navigation