Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn alloy with Mn or Zr addition

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of the extruded Mg–2Gd–1.2Y–0.5Zn (at.%) alloy with Mn or Zr addition were investigated. The results show that Zr addition refines the microstructure of the homogenized alloy more efficiently and facilitates the dissolution of the secondary phases in comparison with Mn addition. After extrusion at 400 °C, both Mn and Zr added alloys exhibit bimodal microstructure comprising fine dynamically recrystallized (DRXed) grains with random orientations as well as coarse unDRXed grains with strong \( \left\langle {10\bar{1}0} \right\rangle \)//ED fiber texture. Thin long period stacking ordered phases and γ precipitates distribute in the unDRXed grains and nano-sized β phases mainly pin at the DRXed grain boundaries. While the coarse initial grain size of homogenized Mn added alloy leads to its lower DRX ratio and stronger texture intensity after extrusion with respect to Zr added alloy. High strength, moderate ductility and improved yield anisotropy are obtained in both extruded alloys. The Mn added alloy exhibits higher strength with ultimate tensile strength of 437 MPa, 0.2% tensile proof stress of 381 MPa but lower elongation to failure of 4.7% than Zr added alloy, which is mainly due to the lower DRX ratio of Mn added alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Wen Q, Deng KK, Shi JY, Zhang BP, Liang W (2014) Effect of Ca addition on the microstructure and tensile properties of Mg–4.0 Zn–2.0 Gd alloys. Mater Sci Eng A 609:1–6

    Article  Google Scholar 

  2. Sun Y, Zhang BP, Wang Y, Geng L, Jiao X (2012) Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater Des 34:58–64

    Article  Google Scholar 

  3. Wang XJ, Xu DK, Wu RZ, Chen XB, Peng QM, Jin L, Xin YC, Zhang ZQ, Liu Y, Chen XH, Chen G, Deng KK, Wang HY (2018) What is going on in magnesium alloys? J Mater Sci Technol 34:245–247. https://doi.org/10.1016/j.jmst.2017.07.019

    Article  Google Scholar 

  4. Wu RZ, Yan YD, Wang GX, Murr LE, Han W, Zhang ZW, Zhang ML (2015) Recent progress in magnesium–lithium alloys. Int Mater Rev 60:65–100

    Article  Google Scholar 

  5. Zhang BP, Wang Y, Geng L, Lu CX (2012) Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater Sci Eng A 539:56–60

    Article  Google Scholar 

  6. Xu C, Nakata T, Oh-ishi K, Homma T, Ozaki T, Kamado S (2017) Improving creep property of Mg–Gd–Zn alloy via trace Ca addition. Scr Mater 139:34–38

    Article  Google Scholar 

  7. Zhang J, Liu S, Wu R, Hou L, Zhang M (2018) Recent developments in high-strength Mg–RE-based alloys: focusing on Mg–Gd and Mg–Y systems. J Magnes Alloy 6:277–291

    Article  Google Scholar 

  8. Zhang J, Liu S, Wu R, Hou L, Zhang M (2018) Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J Magnes Alloys 6:277–291

    Article  Google Scholar 

  9. Stanford N, Barnett MR (2008) The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater Sci Eng A 496:399–408

    Article  Google Scholar 

  10. Stanford N (2013) The effect of rare earth elements on the behavior of magnesium-based alloys: part 2—recrystallisation and texture development. Mater Sci Eng A 565:469–475

    Article  Google Scholar 

  11. Xu C, Nakata T, Qiao XG, Zheng MY, Wu K, Kamado S (2017) Ageing behavior of extruded Mg–8.2 Gd–3.8–Y–1.0Zn–0.4Zr (wt%) alloy containing LPSO phase and γ’ precipitates. Sci Rep 7:43391

    Article  Google Scholar 

  12. Yu Z, Xu C, Meng J, Zhang X, Kamado S (2018) Microstructure evolution and mechanical properties of as-extruded Mg–Gd–Y–Zr alloy with Zn and Nd additions. Mater Sci Eng A 713:234–243

    Article  Google Scholar 

  13. Shao XH, Yang ZQ, Ma XL (2010) Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater 58:4760–4771

    Article  Google Scholar 

  14. Fu H, Ge B, Xin Y, Wu R, Fernandez C, Huang J, Peng Q (2017) Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins. Nano Lett 17:6117–6124

    Article  Google Scholar 

  15. Ali Y, Qiu D, Jiang B, Pan FS, Zhang MX (2015) Current research progress in grain refinement of cast magnesium alloys: a review article. J Alloys Compd 619:639–651

    Article  Google Scholar 

  16. Yu H, Xin Y, Wang M, Liu Q (2018) Hall–Petch relationship in Mg alloys: a review. J Mater Sci Technol 34:248–256. https://doi.org/10.1016/j.jmst.2017.07.022

    Article  Google Scholar 

  17. Yu H, Li C, Xin Y, Chapuis A, Huang X, Liu Q (2017) The mechanism for the high dependence of the Hall–Petch slope for twinning/slip on texture in Mg alloys. Acta Mater 128:313–326

    Article  Google Scholar 

  18. Sun M, Wu GH, Wang W, Ding WJ (2009) Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater Sci Eng A 523:145–151

    Article  Google Scholar 

  19. Anyanwu IA, Kamado S, Kojima Y (2001) Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1206–1211

    Article  Google Scholar 

  20. Rong W, Zhang Y, Wu Y, Sun M, Chen J, Wang Y, Han J, Peng L, Ding H (2017) Effects of Zr and Mn additions on formation of LPSO structure and dynamic recrystallization behavior of Mg–15Gd–1Zn alloy. J Alloys Compd 692:805–816

    Article  Google Scholar 

  21. Basu I, Al-Samman T (2014) Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater 67:116–133

    Article  Google Scholar 

  22. Khan SA, Miyashita Y, Mutoh Y, Sajuri ZB (2006) Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Mater Sci Eng A 420:315–321

    Article  Google Scholar 

  23. Fang XY, Yi DQ, Nie JF, Zhang XJ, Wang B, Xiao LR (2009) Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy. J Alloys Compd 470:311–316

    Article  Google Scholar 

  24. Qi FG, Zhang DF, Zhang XH, Xu XX (2014) Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg–Zn–Y–Mn alloys. Mater Sci Eng A 593:70–78

    Article  Google Scholar 

  25. Zhu YM, Morton AJ, Nie JF (2010) The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater 58:2936–2947

    Article  Google Scholar 

  26. Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y (2007) Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater 55:6798–6805

    Article  Google Scholar 

  27. Fornasini ML, Manfrinetti P (1986) GdMg5: a complex structure with a large cubic cell. Acta Crystallogr C 42:138–141

    Article  Google Scholar 

  28. Wang JF, Song PF, Huang S, Pan FS (2013) Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg–9Gd–xEr–1.6Zn–0.6Zr magnesium alloys. Mater Sci Eng A 563:36–45

    Article  Google Scholar 

  29. Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY (2013) Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng A 559:364–370

    Article  Google Scholar 

  30. Bamberger M, Atiya G, Khawaled S, Katsman A (2014) Comparison study of microstructure and phase evolution in Mg–Nd-and Mg–Gd-based alloys. Metall Mater Trans A 45:3241–3253

    Article  Google Scholar 

  31. Hildebrand Z, Qian M, Stjohn DH, Frost MT, Luo AA (2004) Influence of zinc on the soluble zirconium content in magnesium and the subsequent grain refinement by zirconium. Magnes Technol TMS 2004:241–245

    Google Scholar 

  32. Fu PH, Peng LM, Jiang HY, Zhai CQ, Gao X, Nie JF (2007) Zr-containing precipitates in Mg–3 wt%Nd–0.2 wt%Zn–0.4 wt%Zr alloy during solution treatment at 540° C. Mater Sci Forum 546–549:97–100

    Article  Google Scholar 

  33. Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY (2013) Influence of rolling temperature on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Mater Sci Eng A 559:615–622

    Article  Google Scholar 

  34. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater 59:3646–3658

    Article  Google Scholar 

  35. Jono Y, Yamasaki M, Kawamura Y (2015) Quantitative evaluation of creep strain distribution in an extruded Mg–Zn–Gd alloy of multimodal microstructure. Acta Mater 82:198–211

    Article  Google Scholar 

  36. Hagihara K, Yokotani N, Umakoshi Y (2010) Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 18:267–276

    Article  Google Scholar 

  37. Eades JA (1986) Convergent-beam techniques in transmission electron microscopy. Appl Surf Sci 26:280–293

    Article  Google Scholar 

  38. Uemichi R, Ikematsu Y, Shindo D (2001) Precise evaluation of specimen thickness by convergent-beam electron diffraction technique and electron energy-loss spectroscopy. J Japan Inst Metals 65:427–433

    Article  Google Scholar 

  39. Jono Y, Yamasaki M, Kawamura Y (2013) Effect of LPSO Phase-stimulated texture evolution on creep resistance of extruded Mg–Zn–Gd Alloys. Mater Trans 54:703–712

    Article  Google Scholar 

  40. Barnett MR, Beer AG, Atwell D, Qudin A (2004) Influence of grain size on hot working stresses and microstructures in Mg–3Al–1Zn. Scr Mater 51:19–24

    Article  Google Scholar 

  41. Barnett MR (2003) Quenched and annealed microstructures of hot worked magnesium AZ31. Mater Trans 44:571–577

    Article  Google Scholar 

  42. Onorbe E, Garces G, Perez P, Adeva P (2012) Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X–ZnX alloys. J Mater Sci 47:1085–1093. https://doi.org/10.1007/s10853-011-5899-4

    Article  Google Scholar 

  43. Morikawa T, Kaneko K, Higashida K, Kinoshita D, Takenaka M, Kawamura Y (2008) The fine-grained structure in magnesium alloy containing long-period stacking order phase. Mater Trans 49:1294–1297

    Article  Google Scholar 

  44. Suzuki M, Kimura T, Koike J, Maruyama K (2003) Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr Mater 48:997–1002

    Article  Google Scholar 

  45. Onorbe E, Garces G, Perez P, Cabezas S, Klaus M, Genzel C, Frutos E, Adeva P (2011) The evolution of internal strain in Mg–Y–Zn alloys with a long period stacking ordered structure. Scr Mater 65:719–722

    Article  Google Scholar 

  46. Tane M, Nagai Y, Kimizuka H, Haginara K, Kawamura Y (2013) Elastic properties of an Mg–Zn–Y alloy single crystal with a long-period stacking-ordered structure. Acta Mater 61:6338–6351

    Article  Google Scholar 

  47. Matsuda M, Ando S, Nishida M (2005) Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase. Mater Trans 46:361–364

    Article  Google Scholar 

  48. Liu B, Elsenlohr P, Roters F, Raabe D (2012) Simulation of dislocation penetration through a general low-angle grain boundary. Acta Mater 60:5380–5390

    Article  Google Scholar 

  49. Homma T, Kunito N, Kamado S (2009) Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater 61:644–647

    Article  Google Scholar 

  50. Stanford N, Marceau RKW, Barnett MR (2015) The effect of high yttrium solute concentration on the twinning behavior of magnesium alloys. Acta Mater 82:447–456

    Article  Google Scholar 

  51. Arul Kumar M, Beyerlein IJ, Lebensohn RA, Tome CN (2017) Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mater Sci Eng A 706:295–303

    Article  Google Scholar 

  52. Garces G, Perez P, Cabeza S, Lin HK, Kim S, Gan W, Adeva P (2015) Reverse tension/compression asymmetry of a Mg–Y–Zn alloys containing LPSO phases. Mater Sci Eng A 647:287–293

    Article  Google Scholar 

  53. Yu Z, Huang Y, Mendis CL, Hort N, Meng J (2015) Microstructural evolution and mechanical properties of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr alloy prepared via pre-ageing and hot extrusion. Mater Sci Eng A 624:23–31

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation for Young Scientists of China, Grant Nos. 51801042 and 51704088, JSPS KAKENHI Grant-in-Aid for Young Scientists, Grant No. JP 16K18266, and JST, Advanced Low Carbon Technology Research and Development Program (ALCA), Grant No. 12102886.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Xu or G. Z. Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Nakata, T., Fan, G.H. et al. Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn alloy with Mn or Zr addition. J Mater Sci 54, 10473–10488 (2019). https://doi.org/10.1007/s10853-019-03607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03607-4

Navigation