Skip to main content
Log in

Epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study of filler loading impact on thermal properties

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Filler loading effects in both the thermal stability (TS) and thermal conductivity (TC) of ED-20 epoxy filled with bare (MLG) or oxidized multi-layered graphene nanoplatelets (MLGO) have been experimentally and theoretically studied. The particles were of about 5 × 5 μm in lateral size, about 50 nm in thickness, and of the specific surface area ~ 790 m2/g. The filler’s mass loading varied from 0.5 to 5.0%. TS studies have been performed by the temperature-programmed desorption technique with mass spectrometric detection of volatile moieties. The TC has been measured using the ASTM C1114 standard test method and modeled by equilibrium molecular dynamics simulations via LAMMPS package. TS has proved to be enhanced in MLG nanocomposites and deteriorated when using MLGO fillers, compared to those of the neat epoxy. For both the MLG and MLGO nanocomposites, volatile-moiety outputs showed non-monotonous loading dependences, whereas TC exhibited monotonic increase with increasing loading. It is shown that the TS and TC can be improved simultaneously in these nanocomposites. The likely involvement of the interfacial interaction mechanisms behind these effects is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ASS:

Active surface state

AIREBO:

Adapted intermolecular reactive empirical bond order

CLD:

Cross-linking degree

CVFF:

Consistent valence force field

DGEBA:

Diglycerol ether bisphenol A

DSC:

Differential scanning calorimetry

GNPs:

Graphene nanoplatelets

G-PNC:

Polymer composites

LAMMPS:

Large-scale atomic/molecular massively parallel simulator

LJ:

Lennard-Jones

MLG:

Multi-layered graphene

MLGO:

Multi-layered graphene oxide

MLG-NPs:

Multi-layered graphene nanoplatelets

MLGO-NPs:

Multi-layered graphene-oxide nanoplatelets

MD:

Molecular dynamics

PEPA:

Polyethylene polyamine

PESA:

Pentaethylenesextamine

PNC:

Polymer nanocomposite

TEG:

Thermally expanded graphite

TETA:

Triethylenetetramine

TC:

Thermal conductivity

vdW:

van der Waals

References

  1. Paszkiewicz S, Szymczyk A, Sui XM, Wagner HD, Linares A, Cirera A, Varea A, Ezquerra TA, Rosłaniec Z (2017) Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly(trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite. J Appl Polym Sci 134:44370

    Google Scholar 

  2. Castaldo R, Avolio R, Cocca M, Gentile G, Errico ME, Avella M, Carfagna C, Ambrogi V (2017) A versatile synthetic approach toward hyper-cross-linked styrene-based polymers and nanocomposites. Macromolecules 50:4132–4143

    Google Scholar 

  3. Hagita K, Morita H, Takano H (2016) Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 99:368–375

    Google Scholar 

  4. Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV (2012) Effects of chemical bonding on heat transport across interfaces. Nat Mater 11:502–506

    Google Scholar 

  5. Sun F, Zhang T, Jobbins MM, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T (2014) Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces. Adv Mater 26:6093–6099

    Google Scholar 

  6. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet–epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Google Scholar 

  7. McNamara AJ, Joshi Y, Zhang ZM (2012) Characterization of nanostructured thermal interface materials: a review. Int J Therm Sci 62:2–11

    Google Scholar 

  8. Balandin AA (2011) Thermal properties of graphene and nano-structured carbon materials. Nat Mater 10:569–581

    Google Scholar 

  9. Shahil KMF, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Google Scholar 

  10. Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Google Scholar 

  11. Atif R, Shyha I, Inam F (2016) Modeling and experimentation of multi-layered nanostructured graphene–epoxy nanocomposites for enhanced thermal and mechanical properties. J Compos Mater 51:209–220

    Google Scholar 

  12. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Google Scholar 

  13. Liu CQ, Chen M, Yu W, He YL (2018) Recent advance on graphene in heat transfer enhancement of composites. ES Energy Environ 2:31–42

    Google Scholar 

  14. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Google Scholar 

  15. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Google Scholar 

  16. Atif R, Shyha I, Inam F (2016) Mechanical, thermal, and electrical properties of graphene–epoxy nanocomposites: a review. Polymers 8:1–37

    Google Scholar 

  17. Li A, Zhang C, Zhang Y-F (2017) Thermal conductivity of graphene–polymer composites: mechanisms, properties, and applications. Polymers 9:437–453

    Google Scholar 

  18. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Google Scholar 

  19. Wu Sh, Ladani RB, Zhang J, Bafekrpour E, Ghorbani E, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

    Google Scholar 

  20. Prolongo SG, Jiménez-Suárez A, Moriche R, Ureña A (2014) Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Polym J 53:292–301

    Google Scholar 

  21. Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jiang N (2014) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36:556–565

    Google Scholar 

  22. Gresil M, Wang Z, Poutrel Q-A, Soutis C (2017) Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci Rep 7:5536

    Google Scholar 

  23. Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny JM (2013) Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos Part A 46:166–172

    Google Scholar 

  24. Chu K, Li W, Dong H (2013) Role of graphene waviness on the thermal conductivity of graphene composites. Appl Phys A 111:221–225

    Google Scholar 

  25. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082–1093. https://doi.org/10.1007/s10853-014-8665-6

    Google Scholar 

  26. Park W, Guo Y, Li X, Hu J, Liu L, Ruan X, Chen YP (2015) High-performance thermal interface material based on few-layer graphene composite. J Phys Chem C 119:26753–26759

    Google Scholar 

  27. Geng X, Guo Y, Li D, Li W, Zhu C, Wei X, Chen M, Gao S, Qiu S, Gong Y et al (2013) Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene. Sci Rep 3:1134

    Google Scholar 

  28. Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew Chem Int Ed Engl 53:7720–7738

    Google Scholar 

  29. Shen X, Wang Z, Wu Y, Liu X, He Y, Kim J (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16:3585–3593

    Google Scholar 

  30. Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465

    Google Scholar 

  31. Atif R, Inam F (2016) Modeling and simulation of graphene based polymer nanocomposites: advances in the last decade. Graphene 5:96–142

    Google Scholar 

  32. Andres PL, Ramírez R, Vergés JA (2008) Strong covalent bonding between two graphene layers. Phys Rev B 77:045403/1–045403/5

    Google Scholar 

  33. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Google Scholar 

  34. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Google Scholar 

  35. Faugeras C, Faugeras B, Orlita M, Potemski M, Nairs RS, Geim AK (2010) Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4:1889–1892

    Google Scholar 

  36. Seong M, Kim DS (2015) Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites. J Appl Polym Sci 132(28):42269

    Google Scholar 

  37. Ribeiro H, Silva WM, Rodrigues M-TF, Neves JC, Paniago R, Fantini C, Calado HDR, Seara LM, Silva GG (2013) Glass transition improvement in epoxy/graphene composites. J Mater Sci 48:7883–7892. https://doi.org/10.1007/s10853-013-7478-3

    Google Scholar 

  38. Starkova O, Chandrasekaran S, Prado LASA, Tolle F, Mulhaupt R, Schulte K (2013) Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites. Polym Degrad Stab 98:519–526

    Google Scholar 

  39. Zhao S, Chang H, Chen S, Cui J, Yan Y (2016) High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. Eur Polym J 84:300–312

    Google Scholar 

  40. Wang M, Galpaya D, Lai ZB, Xu Y, Yan C (2014) Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. Int J Smart Nano Mater 5:123–132

    Google Scholar 

  41. Wang Y, Zhan HF, Xiang Y, Yang C, Wang CM, Zhang YY (2015) Effect of covalent functionalization on thermal transport across graphene–polymer interfaces. J Phys Chem C 119(22):12731–12738

    Google Scholar 

  42. Olowojoba GB, Kopsidas S, Eslava S, Gutierrez ES, Kinloch AJ, Mattevi C, Rocha VG, Taylor AC (2017) A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. J Mater Sci 52:7323–7344. https://doi.org/10.1007/s10853-017-0969-x

    Google Scholar 

  43. Fu Y-X, He Z-X, Mo D-C, Lu S-S (2014) Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int J Therm Sci 86:276–283

    Google Scholar 

  44. Tang B, Hu G, Gao H, Ha L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429

    Google Scholar 

  45. Hu X, Qi R, Zhu J, Lu J, Luo Yu, Jin J, Jiang P (2014) Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy. J Appl Polym Sci 131:39754

    Google Scholar 

  46. Eksik O, Bartolucci SF, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N (2016) A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon 101:239–244

    Google Scholar 

  47. Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21:2088–2092

    Google Scholar 

  48. Zhou T, Koga H, Nogi M et al (2015) Targeted kinetic strategy for improving the thermal conductivity of epoxy composite containing percolating multi-layer graphene oxide chains. Express Polym Lett 9:608–623

    Google Scholar 

  49. Höhne G, Hemminger WF, Flammersheim H-J (2003) Differential scanning calorimetry, 2nd rev and enl edn. Springer, Berlin

    Google Scholar 

  50. Menard KP (2002) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Google Scholar 

  51. Surhone LM, Timpledon MT, Marseken SF (2010) Thermogravimetric analysis. VDM Publishing, Riga, p 150

    Google Scholar 

  52. Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q, Chen F, Fu Q (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl Mater Interfaces 4:4398–4404

    Google Scholar 

  53. Park JK, Kim DS (2014) Effects of an aminosilane and a tetra-functional epoxy on the physical properties of di-functional epoxy/graphene nanoplatelets nanocomposites. Polym Eng Sci 54:969–976

    Google Scholar 

  54. Galpaya DGD, Fernando JFS, Rintoul L, Motta N, Waclawik ER, Yan C, George GA (2015) The effect of graphene oxide and its oxidized debris on the cure chemistry and interphase structure of epoxy nanocomposites. Polymer 71:122–134

    Google Scholar 

  55. Monteserın C, Blanco M, Aranzabe E, Aranzabe A, Vilas JL (2017) Effects of graphene oxide and chemically reduced graphene oxide on the curing kinetics of epoxy amine composites. J Appl Polym Sci 134:44803–44815

    Google Scholar 

  56. Katti P, Kundan KV, Kumar S, Bose S (2017) Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites. Polymer 122:184–193

    Google Scholar 

  57. Kim KS, Jeon IY, Ahn SN, Kwon YD, Baek JB (2011) Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. J Mater Chem 21:7337–7342

    Google Scholar 

  58. Liu W, Koh KL, Lu J, Yang L, Phua S, Kong J, Chen Z, Lu X (2012) Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies. J Mater Chem 22:18395–18402

    Google Scholar 

  59. Wei J, Vo T, Inam F (2015) Epoxy/graphene nanocomposites—processing and properties: a review. RSC Adv 90:73510–73524

    Google Scholar 

  60. Imran KA, Shivakumar KN (2017) Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties. J Reinf Plast Compos 37:118–133

    Google Scholar 

  61. Chandel M, Moitra D, Makkar P, Sinha H, Hora HS, Ghosh NN (2018) Synthesis of multifunctional CuFe2O4—reduced graphene oxide nanocomposite: an efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures. RSC Adv 8:27725–27739

    Google Scholar 

  62. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51

    Google Scholar 

  63. Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662

    Google Scholar 

  64. Chang DW, Choi H-J, Jeon I-Y, Baek J-B (2013) Edge-selectively functionalized graphene nanoplatelets. Chem Rec 13:224–238

    Google Scholar 

  65. Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V (2013) The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv Funct Mater 23:4684–4693

    Google Scholar 

  66. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  67. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Google Scholar 

  68. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Google Scholar 

  69. Bratychak M, Ivashkiv O, Astakhova O (2014) Chemical modification of ED-20 epoxy oligomer by 1,4-butanediol. Dopovidi Nats Acad Nauk Ukrainy 8:97–102

    Google Scholar 

  70. Bolon DA (1995) Epoxy chemistry for electrical insulation. IEEE Electr Insul Mag 11:10–18

    Google Scholar 

  71. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Hollertz R, Nüesch FA, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Google Scholar 

  72. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19

    Google Scholar 

  73. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Elsevier, New York

    Google Scholar 

  74. Romo TD, Grossfield A (2011) Block covariance overlap method and convergence in molecular dynamics simulation. J Chem Theory Comput 7:2464–2472

    Google Scholar 

  75. Schelling PK, Phillpot SR, Keblinski P (2002) Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B 65:144306-1–144306-12

    Google Scholar 

  76. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM (2012) Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45:5307–5315

    Google Scholar 

  77. Kumar A, Sundararaghavan V, Browning AR (2014) Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions. Model Simul Mater Sci Eng 22:025013

    Google Scholar 

  78. Li CY, Strachan A (2015) Molecular scale simulations on thermoset polymers: a review. J Polym Sci Part B Polym Phys 53:103–122

    Google Scholar 

  79. Stoffels MT, Staiger MP, Bishop CM (2016) Equilibrium moisture content of a crosslinked epoxy network via molecular dynamics simulations. Model Simul Mater Sci Eng 24:055002

    Google Scholar 

  80. Meng Z, Bessa MA, Xia W, Liu WK, Keten S (2016) Predicting the macroscopic fracture energy of epoxy resins from atomistic molecular simulations. Macromolecules 49:9474–9483

    Google Scholar 

  81. Chien SK, Yang YT, Chen CK (2011) Influence of hydrogen functionalization on thermal conductivity of graphene: nonequilibrium molecular dynamics simulations. Appl Phys Lett 98:033107

    Google Scholar 

  82. Mortazavi B, Ahzi S (2013) Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63:460–470

    Google Scholar 

  83. Alexeev D, Chen J, Walther J, Giapis KP, Angelikopoulos P, Koumoutsakos P (2015) Kapitza resistance between few-layer graphene and water: liquid layering effects. Nano Lett 15:5744–5749

    Google Scholar 

  84. Aref AH, Erfan-Niya H, Entezami AA (2016) Effect of alkyl functionalization on thermal conductivity of graphene oxide nanosheets: a molecular dynamics study. J Mater Sci 51:6824–6835. https://doi.org/10.1007/s10853-016-9970-z

    Google Scholar 

  85. Wang Y, Yang Ch, Pei Q-X, Zhang Y (2016) Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites. ACS Appl Mater Interfaces 8:8272–8279

    Google Scholar 

  86. Wang T-Y, Tsai J-L (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Comput Mater Sci 122:272–280

    Google Scholar 

  87. Tang H, Zhao Y, Yang X, Liu D, Shan S, Cui F (2017) Understanding the roles of solution chemistries and functionalization on the aggregation of graphene-based nanomaterials using molecular dynamic simulations. J Phys Chem C 121:13888–13897

    Google Scholar 

  88. Xiao W, Zhai X, Ma P, Fan T, Li X (2018) Numerical study on the thermal behavior of graphene nanoplatelets/epoxy composites. Results Phys 9:673–679

    Google Scholar 

  89. Li M, Zhou H, Zhang Y, Liao Y, Zhou H (2018) Effect of defects on thermal conductivity of graphene/epoxy nanocomposites. Carbon 130:295–303

    Google Scholar 

  90. Aramoon A, Breitzman TD, Woodward CF, El-Awady JA (2017) Correlating free-volume hole distribution to the glass transition temperature of epoxy polymers. J Phys Chem B 121:8399–8407

    Google Scholar 

  91. Gavrilov AA, Komarov PV, Khalaturacs PG (2015) Thermal properties and topology of epoxy networks: a multiscale simulation methodology. Macromolecules 48:206–212

    Google Scholar 

  92. Lakshmanan A, Srivastava S, Ramazani A, Sundararaghavan V (2018) Thermal conductivity of pillared graphene–epoxy nanocomposites using molecular dynamics. Appl Phys Lett 112:151902

    Google Scholar 

  93. Sahagun CM, Knauer KM, Morgan SE (2012) Molecular network development and evolution of nanoscale morphology in an epoxy-amine thermoset polymer. J Appl Polym Sci 126:1394–1405

    Google Scholar 

  94. Morsch S, LiuY Greensmith P, Lyon SB, Gibbon SR (2017) Molecularly controlled epoxy network nanostructures. Polymer 108:146–153

    Google Scholar 

  95. Wang MC, Lai ZB, Galpaya D, Yan C, Hu N, Zhou LM (2014) Atomistic simulation of surface functionalization on the interfacial properties of graphene–polymer nanocomposites. J Appl Phys 115:123520

    Google Scholar 

  96. Zhang T, Luo T (2016) The role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J Phys Chem B 120:803–812

    Google Scholar 

  97. Wang Yu (2016) Molecular dynamics modelling and simulations on graphene–polymer nanocomposites. Ph.D. dissertation, Western Sydney University

  98. Bao H, Chen J, Gu XK, Cao BY (2018) A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ 1:16–55

    Google Scholar 

  99. Bandyopadhyay A, Valavala P, Clancy T, Wise K, Odegard G (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52:2445–2452

    Google Scholar 

  100. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Google Scholar 

  101. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Google Scholar 

  102. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4:31–47

    Google Scholar 

  103. Sun H (1993) Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding properties for polyurethane hard segments. Macromolecules 26:5924–5936

    Google Scholar 

  104. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41:6837–6842

    Google Scholar 

  105. Varshney V, Patnaik SS, Roy AK, Farmer BL (2009) Heat transport in epoxy networks: a molecular dynamics study. Polymer 50:3378–3385

    Google Scholar 

  106. Varshney V, Roy AK, Michalak TJ, Lee J, Farmer BL (2013) Effect of curing and functionalization on the interface thermal conductance in carbon nanotube–epoxy composites. JOM 65:140–146

    Google Scholar 

  107. Fasanella N, Sundararaghavan V (2015) Atomistic modeling of thermomechanical properties of SWNT/epoxy nanocomposites. Model Simul Mater Sci Eng 23:065003

    Google Scholar 

  108. Liu J, Alhashme M, Yang RG (2012) Thermal transport across carbon nanotubes connected by molecular linkers. Carbon 50:1063–1070

    Google Scholar 

  109. Hockney RW, Eastwood JW (1988) Computer simulation using particles. SIAM reviews. CRC Press, Boca Raton

    Google Scholar 

  110. Kubo R, Toda M, Hashitsume N, Saito N (1985) Statistical physics II. Nonequilibrium statistical mechanics. Springer, Berlin

    Google Scholar 

  111. Pitsa D, Danikas MG (2011) Interfaces features in polymer nanocomposites: a review of proposed models. NANO 6:497–508

    Google Scholar 

  112. Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 41:6752–6756

    Google Scholar 

  113. Zaman I, Phan TT, Kuan H, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611

    Google Scholar 

  114. Ma J, Meng Q, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, Kuan H (2013) Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A 1(13):4255–4264

    Google Scholar 

  115. Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55:4990–5000

    Google Scholar 

  116. Bandyopadhyay A, Odegard GM (2012) Molecular modeling of crosslink distribution in epoxy polymers. Model Simul Mater Sci Eng 20:045018

    Google Scholar 

  117. Grassie N, Scott G (1988) Polymer degradation and stabilization. Cambridge University Press, Cambridge

    Google Scholar 

  118. Zarrin H, Higgins D, Jun Y, Chen ZW, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Google Scholar 

  119. Ravikumar SK (2012) Freestanding sulfonated graphene oxide paper: a new polymer electrolyte for polymer electrolyte fuel cells. Chem Commun 48:5584–5586

    Google Scholar 

  120. Hatakeyama K, Karim MR, Ogata Ch et al (2014) Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew Chem Int Ed Engl 53:6997–7000

    Google Scholar 

  121. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Google Scholar 

  122. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Google Scholar 

  123. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Google Scholar 

  124. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817

    Google Scholar 

  125. Gao Y, Müller-Plathe F (2016) Increasing the thermal conductivity of graphene-polyamide-6,6 nanocomposites by surface-grafted polymer chains: calculation with molecular dynamics and effective-medium approximation. J Phys Chem B 120:1336–1346

    Google Scholar 

  126. Lin W, Zhang R, Wong CP (2010) Modeling of thermal conductivity of graphite nanosheet composites. J Electron Mater 39:268–272

    Google Scholar 

  127. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699

    Google Scholar 

  128. Hu J, Rua X, Che YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735

    Google Scholar 

  129. Schabel MC, Martins JL (1992) Energetics of interplanar binding in graphite. Phys Rev B 46:7185–7188

    Google Scholar 

  130. Terrones M, Martin O, Gonzalez M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Diaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23:5302–5310

    Google Scholar 

  131. Mortazavi B, Otschke MP, Cuniberti G (2014) Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale 6:3344–3352

    Google Scholar 

  132. Mortazavi B, Rabczuk T (2015) Multiscale modeling of heat conduction in graphene laminates. Carbon 85:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Gorb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelov, B., Gorb, A., Nadtochiy, A. et al. Epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study of filler loading impact on thermal properties. J Mater Sci 54, 9247–9266 (2019). https://doi.org/10.1007/s10853-019-03523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03523-7

Navigation