Skip to main content

Advertisement

Log in

Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Li-ion capacitors (LICs) combine the merits of supercapacitors and batteries, which are usually fabricated by battery-type anode and supercapacitor-type cathode. The main challenge for LICs is to make kinetics balance between anode and cathode. Herein, we created a LIC based on superabsorbent polymer salt-derived carbon-based nanomaterials. By annealing the Mn2+ adsorbed polymer salt precursor, the obtained MnO/C anode with a high specific surface area of 762 m2 g−1 displays a high capacity of 540 mAh g−1 at 0.1 A g−1 and an excellent capacity retention of 80% after 500 cycles. The hierarchical porous carbon cathode is generated by the combined carbonization and KOH activation techniques, which exhibits an excellent capacitive storage performance. After well-matched capacity and kinetic behavior in both anode and cathode, the LIC possesses a high energy density of 97.3 Wh kg−1 and a superior cycle life with 80% capacity retention after 10000 cycles. This work gives a case study to fabricate high-performance energy storage devices by using environmentally friendly electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:3055

    Article  Google Scholar 

  2. Huang B, Pan Z, Su X, Liang A (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286

    Article  Google Scholar 

  3. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647–12660

    Article  Google Scholar 

  4. Wang H, Zhu C, Chao D, Yan Q, Fan HJ (2017) Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater 29:1702093

    Article  Google Scholar 

  5. Li B, Zheng J, Zhang H et al (2018) electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater 30:1705670

    Article  Google Scholar 

  6. Wang H, Xu Z, Li Z et al (2014) Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett 14:1987–1994

    Article  Google Scholar 

  7. Wu T, Tu F, Liu S, Zhuang S, Jin G, Pan C (2014) MnO nanorods on graphene as an anode material for high capacity lithium ion batteries. J Mater Sci 49:1861–1867. https://doi.org/10.1007/s10853-013-7874-8

    Article  Google Scholar 

  8. Bai T, Zhou H, Zhou X, Liao Q, Chen S, Yang J (2017) N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries. J Mater Sci 52:11608–11619. https://doi.org/10.1007/s10853-017-1247-7

    Article  Google Scholar 

  9. Xiao Y, Cao M (2015) carbon-anchored MnO nanosheets as an anode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 7:12840–12849

    Article  Google Scholar 

  10. Zhao Y, Cui Y, Shi J et al (2017) Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem A 5:15243–15252

    Article  Google Scholar 

  11. Sheng L, Jiang H, Liu S, Chen M, Wei T, Fan Z (2018) Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. J Power Sources 397:325–333

    Article  Google Scholar 

  12. Puthusseri D, Aravindan V, Madhavi S, Ogale S (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ Sci 7:728–735

    Article  Google Scholar 

  13. Liu X, Wang H, Cui Y et al (2018) High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. J Mater Sci 53:6763–6773. https://doi.org/10.1007/s10853-017-1982-9

    Article  Google Scholar 

  14. Zhu G, Wang L, Lin H et al (2018) Walnut-Like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 30:1800003

    Article  Google Scholar 

  15. Chen LF, Ma SX, Lu S, Feng Y, Zhang J, Xin S, Yu SH (2016) Biotemplated synthesis of three-dimensional porous MnO/C–N nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries. Nano Res 10:1–11

    Article  Google Scholar 

  16. Liu C, Zhang C, Song H, Zhang C, Liu Y, Nan X, Cao G (2016) Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22:290–300

    Article  Google Scholar 

  17. Niu J, Liang J, Shao R, Liu M, Dou M, Li Z, Huang Y, Wang F (2017) Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41:285–292

    Article  Google Scholar 

  18. Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718

    Article  Google Scholar 

  19. Zhang K, Han P, Gu L et al (2012) Synthesis of nitrogen-doped mno/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664

    Article  Google Scholar 

  20. Li Z, Ahadi K, Jiang K, Ahvazi B, Li P, Anyia AO, Cadien K, Thundat T (2017) Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res 10:1847–1860

    Article  Google Scholar 

  21. Xia Q, Yang H, Wang M et al (2017) High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 7:1701336

    Article  Google Scholar 

  22. Yang H, Xu G, Wei X, Yang M, Guo Q, Wan L, Xia H, Yu Y (2018) Ultrafast hetero-assembly of monolithic interwoven V2O5 nanobelts/carbon nanotubes architectures for high-energy alkali-ion batteries. J Power Sources 395:295–304

    Article  Google Scholar 

  23. Huang Y, Peng L, Liu Y, Zhao G, Chen J, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8:15205–15215

    Article  Google Scholar 

  24. Zheng X, Lv W, Tao Y et al (2014) Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem Mater 26:6896–6903

    Article  Google Scholar 

  25. Arnaiz M, Botas C, Carriazo D, Mysyk R, Mijangos F, Rojo T, Ajuria J, Goikolea E (2018) Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochim Acta 284:542–550

    Article  Google Scholar 

  26. Wang S, Xing Y, Xiao C, Xiao C, Xu H, Zhang S (2016) A peapod-inspired MnO@C core-shell design for lithium ion batteries. J Power Sources 307:11–16

    Article  Google Scholar 

  27. Cui Y, Wang H, Xu X et al (2018) Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustain Energy Fuels 2:381–391

    Article  Google Scholar 

  28. Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26:3082–3093

    Article  Google Scholar 

  29. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929

    Article  Google Scholar 

  30. Zhao C, Yu C, Zhang M et al (2017) Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS 2 integrated on carbon fibers. Nano Energy 41:66–74

    Article  Google Scholar 

  31. Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219

    Article  Google Scholar 

  32. Xia X, Chao D, Zhang Y et al (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12:3048–3058

    Article  Google Scholar 

  33. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  Google Scholar 

  34. Shi Z, Zhang J, Wang J, Shi J, Wang C (2015) Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta 153:476–483

    Article  Google Scholar 

  35. Ajuria J, Redondo E, Arnaiz M, Mysyk R, Rojo T, Goikolea E (2017) Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources 359:17–26

    Article  Google Scholar 

  36. Ajuria J, Arnaiz M, Botas C, Carriazo D, Mysyk R, Rojo T, Av Talyzin, Goikolea E (2017) Graphene-based lithium ion capacitor with high gravimetric energy and power densities. J Power Sources 363:422–427

    Article  Google Scholar 

  37. Li D, Ye C, Chen X, Wang S, Wang H (2018) A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. J Power Sources 382:116–121

    Article  Google Scholar 

  38. Zhao Q, Yang D, Whittaker AK, Zhao XS (2018) A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J Power Sources 396:12–18

    Article  Google Scholar 

  39. Lai CM, Kao TL, Tuan HY (2018) Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance. J Power Sources 379:261–269

    Article  Google Scholar 

  40. Lee JH, Kim HK, Baek E, Pecht M, Lee SH, Lee YH (2016) Improved performance of cylindrical hybrid supercapacitor using activated carbon/niobium doped hydrogen titanate. J Power Sources 301:348–354

    Article  Google Scholar 

  41. Sun X, Zhang X, Liu W, Wang K, Li C, Li Z, Ma Y (2017) Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta 235:158–166

    Article  Google Scholar 

  42. Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506

    Article  Google Scholar 

  43. Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Duun B, Lu Y (2011) High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater 1:1089–1093

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Natural Science Foundation of China (Nos. 21471139, and 51402272) and Fundamental Research Funds for the Central Universities (No. 201822008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanlei Wang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, H., Liu, W. et al. Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors. J Mater Sci 54, 7811–7822 (2019). https://doi.org/10.1007/s10853-019-03423-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03423-w

Navigation