Skip to main content
Log in

Crystallization and microstructure of a glass seal for rapid laser sealing in the system CaO/Al2O3/SiO2

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A glass with the composition 61 CaO·30 Al2O3·9 SiO2 was studied with respect to its crystallization behavior and its suitability as a rapidly crystallizing material for laser sealing. The glass was studied by differential scanning calorimetry; from the profiles recorded, Avrami activation energies and Avrami coefficients were calculated. The latter are in the range between 0.99 and 1.55 which is supposedly attributed to sole surface crystallization. During thermal treatment as well as during laser sealing, Ca12Al14O33, CaAl2O4 and Ca3Al2O6 are formed. These phases were also observed in SEM micrographs as evidenced by electron backscatter diffraction from the attributed Kikuchi patterns. Transmission electron microscopy showed a crystallized CaO- and SiO2-enriched interface which strongly adhered to the Al2O3 ceramic. The porosity of the crystallized seal was in the order of few percent. The studied glass proved suitable as crystallizing seal for rapid laser sealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Lara C, Pascual M, Prado M, Duran A (2004) Sintering of glasses in the system Ro–Al2O3–BaO–SiO2 (R = Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ion 170:201–208. https://doi.org/10.1016/j.ssi.2004.03.009

    Article  CAS  Google Scholar 

  2. Thieme C, Rüssel C (2014) Cobalt containing crystallizing glass seals for solid oxide fuel cells—a new strategy for strong adherence to metals and high thermal expansion. J Power Source 258:182–188. https://doi.org/10.1016/j.jpowsour.2014.02.024

    Article  CAS  Google Scholar 

  3. Reis ST, Pascual MJ, Brow RK, Ray CS, Zhang T (2010) Crystallization and processing of sofc sealing glasses. J Non-Cryst Solids 356:3009–3012. https://doi.org/10.1016/j.jnoncrysol.2010.02.028

    Article  CAS  Google Scholar 

  4. Rabinovich EM (1985) Review preparation of glass by sintering. J Mater Sci 20:4259–4297. https://doi.org/10.1007/BF00559317

    Article  CAS  Google Scholar 

  5. Börner F-D, Lippmann W, Hurtado A (2010) Laser-joined Al2o3 and ZrO2 ceramics for high-temperature applications. J Nucl Mater 405:1–8. https://doi.org/10.1016/j.jnucmat.2010.07.020

    Article  CAS  Google Scholar 

  6. Börner F-D, Lippmann W, Hurtado A, Schön B (2014) Glasses for laser joining of zirconia ceramics. J Eur Ceram Soc 34:765–772. https://doi.org/10.1016/j.jeurceramsoc.2013.09.019

    Article  CAS  Google Scholar 

  7. Herrmann M, Lippmann W, Hurtado A (2014) Y2O3-Al2O3-SiO2-based glass-ceramic fillers for the laser-supported joining of SiC. J Eur Ceram Soc 34:1935–1948. https://doi.org/10.1016/j.jeurceramsoc.2014.01.019

    Article  CAS  Google Scholar 

  8. Herrmann M, Schonfeld K, Klemm H, Lippmann W, Hurtado A, Michaelis A (2014) Laser-supported joining of SiC-Fiber/SiC ceramic matrix composites fabricated by precursor infiltration. J Eur Ceram Soc 34:2913–2924. https://doi.org/10.1016/j.jeurceramsoc.2014.03.016

    Article  CAS  Google Scholar 

  9. Fujitsu S, Ono S, Nomura H et al (2003) Joining of single-crystal sapphire to alumina using silicate glasses. J Ceram Soc Jpn 111:448–451. https://doi.org/10.2109/jcersj.111.448

    Article  CAS  Google Scholar 

  10. Schacht M, Boukis N, Dinjus E (2000) Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures. J Mater Sci 35:6251–6258. https://doi.org/10.1023/a:1026714218522

    Article  CAS  Google Scholar 

  11. Nagaoka T, Kita K, Kondo N (2015) Hot corrosion of Al2O3 and SiC ceramics by KCl-NaCl Molten salt. J Ceram Soc Jpn 123:685–689. https://doi.org/10.2109/jcersj2.123.685

    Article  CAS  Google Scholar 

  12. Kasch S, Conrad D, Sändig S (2014) High-temperature joining of ceramics and sapphire by laser-based process. J Ceram Sci Tech 5:269–274. https://doi.org/10.4416/Jcst2014-00027

    Article  Google Scholar 

  13. Taylor D (1984) Thermal-expansion data. 3. Sesquioxides, M2O3, with the Corundum and the A-, B- and C-M2O3 Structures. Trans J Br Ceram Soc 83:92–98

    CAS  Google Scholar 

  14. Kerstan M, Rüssel C (2011) Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). J Power Source 196:7578–7584. https://doi.org/10.1016/j.jpowsour.2011.04.035

    Article  CAS  Google Scholar 

  15. de Pablos-Martín A, Ebert M, Patzig C et al (2014) Laser welding of sapphire wafers using a thin-film Fresnoite glass solder. Microsyst Technol 21:1035–1045. https://doi.org/10.1007/s00542-014-2398-y

    Article  CAS  Google Scholar 

  16. Herrmann M, Schonfeld K, Klemm H, Lippmann W, Hurtado A, Michaelis A (2014) Laser-supported joining of SiC-Fiber/SiCN ceramic matrix composites fabricated by precursor infiltration. J Eur Ceram Soc 34:2913–2924. https://doi.org/10.1016/j.jeurceramsoc.2014.03.016

    Article  CAS  Google Scholar 

  17. Sabato AG, Salvo M, De Miranda A, Smeacetto F (2015) Crystallization behaviour of glass-ceramic sealant for solid oxide fuel cells. Mater Lett 141:284–287. https://doi.org/10.1016/j.matlet.2014.11.128

    Article  CAS  Google Scholar 

  18. Salmang H, Scholze H (2007) Keramik. Springer, Berlin

    Google Scholar 

  19. Ferraris M, Salvo M, Casalegno V, Ciampichetti A, Smeacetto F, Zucchetti M (2008) Joining of machined SiC/SiC composites for thermonuclear fusion reactors. J Nucl Mater 375:410–415. https://doi.org/10.1016/j.jnucmat.2008.02.020

    Article  CAS  Google Scholar 

  20. Heydari F, Maghsoudipour A, Hamnabard Z, Farhangdoust S (2013) Evaluation on properties of Cao-BaO-B2O3-Al2O3-SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cells. J Mater Sci Technol 29:49–54. https://doi.org/10.1016/j.jmst.2012.11.011

    Article  CAS  Google Scholar 

  21. Döhler F, Kasch S, Schmidt T, Rüssel C (2016) Sealing of alumina using CO2 laser and a rapidly crystallizing glass. J. Mater. Proc. Technol. 233:206–211

    Article  Google Scholar 

  22. Döhler F, Zscheckel T, Kasch S, Schmidt T, Rüssel C (2017) A glass in the system CaO/MgO/Al2O3/SiO2 and the rapid laser sealing of alumina. Ceram Int 43:4302–4308

    Article  Google Scholar 

  23. Döhler F, Zscheckel T, Kasch S, Schmidt T, Rüssel C (2017) Phase formation and microstructure during laser sintering and crystallization of a 4.2 MgO·5.0 ZnO·44.1 CaO·26.7 Al2O3·20 SiO2, glass. J Mater Sci 52:9344–9354. https://doi.org/10.1007/s10853-017-1151-1

    Article  CAS  Google Scholar 

  24. Höche T, Gerlach JW, Petsch T (2006) Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106:981–985. https://doi.org/10.1016/j.ultramic.2006.05.007

    Article  CAS  Google Scholar 

  25. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  26. Criado JM, Ortega A (1986) Non-isothermal transformation kinetics: remarks on the Kissinger method. J Non Cryst Solids 87:302–311. https://doi.org/10.1016/S0022-3093(86)80004-7

    Article  CAS  Google Scholar 

  27. Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6. https://doi.org/10.1016/j.tca.2012.04.008

    Article  CAS  Google Scholar 

  28. Farjas J, Roura P (2006) Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater 54:5573–5579. https://doi.org/10.1016/j.actamat.2006.07.037

    Article  CAS  Google Scholar 

  29. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer (Guildf) 12:150–158. https://doi.org/10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  30. Sbirrazzuoli N, Girault Y, Elégant L (1997) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta 293:25–37. https://doi.org/10.1016/S0040-6031(97)00023-3

    Article  CAS  Google Scholar 

  31. Vázquez J, García-G Barreda D, López-Alemany PL, Villares P, Jiménez-Garay R (2005) A comparative study on the single-scan and multiple-scan techniques in differential scanning calorimetry. Thermochim Acta 430:173–182. https://doi.org/10.1016/j.tca.2005.01.044

    Article  CAS  Google Scholar 

  32. Liu F, Sommer F, Mittemeijer EJ (2004) An analytical model for isothermal and isochronal transformation kinetics. J Mater Sci 39:1621–1634. https://doi.org/10.1023/B:JMSC.0000016161.79365.69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These investigations were conducted with the kind support of the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF), Köln, by agency of the Hüttentechnische Vereinigung der Deutschen Glasindustrie (HVG), Frankfurt/Main, through the resources of the Bundesministerium für Wirtschaft (Grant: IGF 17751 BR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rüssel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döhler, F., Zscheckel, T., Kasch, S. et al. Crystallization and microstructure of a glass seal for rapid laser sealing in the system CaO/Al2O3/SiO2. J Mater Sci 53, 16207–16219 (2018). https://doi.org/10.1007/s10853-018-2786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2786-2

Keywords

Navigation