Skip to main content
Log in

The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the microstructural development and its effect on the thermal conductivity of polyamide/cyclic olefin copolymer (PA/COC) blends containing boron nitride (BN) particles were investigated. The co-continuous morphology of the BN-filled composites was confirmed by SEM images. The composite samples were prepared by a masterbatch method in order to localize the BN particles in the PA phase. The melt viscoelastic results have shown a liquid–solid transition at low-frequency range, indicating a three-dimensional percolated microstructure. However, the results have not shown a pronounced percolation in the thermal conductivity. These results have suggested that the sensitivity of the thermal conductivity of these composites to percolated microstructure is not as strong as the rheological behavior. A comparison made between the BN-filled PA and the blend composites with co-continuous morphology revealed a lower thermal conductivity for the PA–BN/COC compared to the PA/BN composites with the same BN concentration. Moreover, the values of thermal conductivity for the blend composites were found to be comparable with those predicted by a combination of Nielsen’s model (for filled polymers) and Wang’s model introduced for blends with co-continuous morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos Part A Appl Sci Manuf 32:1749–1757

    Article  Google Scholar 

  2. Hsieh C, Chung S (2006) High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J Appl Polym Sci 102:4734–4740

    Article  CAS  Google Scholar 

  3. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320:177–186

    Article  CAS  Google Scholar 

  4. Zhou W, Qi S, Li H, Shao S (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42

    Article  CAS  Google Scholar 

  5. Permal A, Devarajan M, Hung HL, Zahner T, Lacey D, Ibrahim K (2016) Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets. J Mater Sci 51:7415–7426. https://doi.org/10.1007/s10853-016-0016-3

    Article  CAS  Google Scholar 

  6. Zhou T, Wang X, Mingyuan GU, Liu X (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer (Guildf) 49:4666–4672

    Article  CAS  Google Scholar 

  7. Kochetov R, Andritsch T, Lafont U, Morshuis PHF, Picken SJ, Smit JJ (2009) Thermal behaviour of epoxy resin filled with high thermal conductivity nanopowders. In: Electrical insulation conference. EIC 2009. IEEE, pp 524–528

  8. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    Article  CAS  Google Scholar 

  9. Zhou S, Chen Y, Zou H, Liang M (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91

    Article  CAS  Google Scholar 

  10. Huang X, Wang S, Zhu M, Yang K, Jiang P, Bando Y, Golberg D, Zhi C (2014) Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. Nanotechnology 26:15705

    Article  Google Scholar 

  11. Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, Preston C, Yang B, Hu L (2014) Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8:3606–3613

    Article  CAS  Google Scholar 

  12. Tao Y, Yang Z, Lu X, Tao G, Xia Y, Wu H (2012) Influence of filler morphology on percolation threshold of isotropical conductive adhesives (ICA). Sci China Technol Sci 55:28–33

    Article  CAS  Google Scholar 

  13. Tsutsumi N, Takeuchi N, Kiyotsukuri T (1991) Measurement of thermal diffusivity of filler-polymide composites by flash radiometry. J Polym Sci Part B Polym Phys 29:1085–1093

    Article  CAS  Google Scholar 

  14. Bicerano J, Douglas JF, Brune DA (1999) Model for the viscosity of particle dispersions. J Macromol Sci Part C 39:561–642

    Article  Google Scholar 

  15. Hong J-P, Yoon S-W, Hwang T-S, Lee Y, Won S-H, Nam J-D (2010) Interphase control of boron nitride/epoxy composites for high thermal conductivity. Korea-Australia Rheol J 22:259–264

    Google Scholar 

  16. Gu J, Zhang Q, Dang J, Xie C (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23:1025–1028

    Article  CAS  Google Scholar 

  17. Lee B, Dai G (2009) Influence of interfacial modification on the thermal conductivity of polymer composites. J Mater Sci 44:4848–4855. https://doi.org/10.1007/s10853-009-3739-6

    Article  CAS  Google Scholar 

  18. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2015) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  CAS  Google Scholar 

  19. Chung S-L, Lin J-S (2016) Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 21:670

    Article  Google Scholar 

  20. Cheewawuttipong W, Fuoka D, Tanoue S, Uematsu H, Iemoto Y (2013) Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Procedia 34:808–817

    Article  CAS  Google Scholar 

  21. Lin Z, Mcnamara A, Liu Y, Moon K, Wong C-P (2014) Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos Sci Technol 90:123–128

    Article  CAS  Google Scholar 

  22. Deng S, Wang J, Zong G, Chen F, Chai S, Fu Q (2016) Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv 6:10185–10191

    Article  CAS  Google Scholar 

  23. Price DM, Jarratt M (2002) Thermal conductivity of PTFE and PTFE composites. Thermochim Acta 392:231–236

    Article  Google Scholar 

  24. Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon N Y 50:5429–5440

    Article  CAS  Google Scholar 

  25. Zhou T, Wang X, Liu X, Xiong D (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon N Y 48:1171–1176

    Article  CAS  Google Scholar 

  26. Cui L, Zhang Y, Zhang Y, Zhang X, Zhou W (2007) Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black. Eur Polym J 43:5097–5106

    Article  CAS  Google Scholar 

  27. Hoseini AHA, Arjmand M, Sundararaj U, Trifkovic M (2017) Tunable electrical conductivity of polystyrene/polyamide-6/carbon nanotube blend nanocomposites via control of morphology and nanofiller localization. Eur Polym J 95:418–429

    Article  CAS  Google Scholar 

  28. Bizhani H, Nayyeri V, Katbab AA, Jalali-Arani A, Nazockdast H (2018) Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur Polym J 100:209–218

    Article  CAS  Google Scholar 

  29. Cao J-P, Zhao J, Zhao X, You F, Yu H, Hu G-H, Dang Z-M (2013) High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos Sci Technol 89:142–148

    Article  CAS  Google Scholar 

  30. Cao J-P, Zhao X, Zhao J, Zha J-W, Hu G-H, Dang Z-M (2013) Improved thermal conductivity and flame retardancy in polystyrene/poly (vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces 5:6915–6924

    Article  CAS  Google Scholar 

  31. Yorifuji D, Ando S (2011) Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: advantage of vertical double percolation structure. J Mater Chem 21:4402–4407

    Article  CAS  Google Scholar 

  32. Cao JP, Zhao X, Zhao J, Zha JW, Hu GH, Dang ZM (2013) Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces 5:6915–6924. https://doi.org/10.1021/am401703m

    Article  CAS  Google Scholar 

  33. Galloway JA, Koester KJ, Paasch BJ, Macosko CW (2004) Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends. Polymer (Guildf) 45:423–428. https://doi.org/10.1016/j.polymer.2003.10.098

    Article  CAS  Google Scholar 

  34. Brailsford D, Major KG (2002) The thermal conductivity of aggregates of several phases, including porous materials. Br J Appl Phys 15:313–319. https://doi.org/10.1088/0508-3443/15/3/311

    Article  Google Scholar 

  35. Marsden SSAJE, Wiggins LSS, Glass L, Kohn RV, Sastry SS (1993) Interdisciplinary applied mathematics. Springer, Berlin

    Google Scholar 

  36. Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon press, Oxford

    Google Scholar 

  37. Shin JY, Park JY, Liu C, He J, Kim SC (2005) Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report). Pure Appl Chem 77:801–814

    Article  CAS  Google Scholar 

  38. Nielsen LE (1974) The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam 13:17–20. https://doi.org/10.1021/i160049a004

    Article  CAS  Google Scholar 

  39. Kochetov R, Korobko AV, Andritsch T, Morshuis PHF, Picken SJ, Smit JJ (2011) Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J Phys D Appl Phys 44:395401

    Article  Google Scholar 

  40. Wang J, Carson JK, North MF, Cleland DJ (2008) A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int J Heat Mass Transf 51:2389–2397

    Article  CAS  Google Scholar 

  41. Li L, Masuda T (1990) Effect of dispersion of particles on viscoelasticity of CaCo3-filled polypropylene melts. Polym Eng Sci 30:841–847

    Article  CAS  Google Scholar 

  42. Patti A, Russo P, Acierno D, Acierno S (2016) The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Compos Part B Eng 94:350–359

    Article  CAS  Google Scholar 

  43. Capuano G, Filippone G, Romeo G, Acierno D (2012) Universal features of the melt elasticity of interacting polymer nanocomposites. Langmuir 28:5458–5463

    Article  CAS  Google Scholar 

  44. Oskooie AJ, Aghjeh MKR, Rafeie O, Tavakoli A (2017) Composition and compatibilization induced morphology alteration in PVDF/LLDPE blends: correlation between rheology and morphology. J Polym Res 24:21

    Article  Google Scholar 

  45. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271. https://doi.org/10.1007/BF00310802

    Article  CAS  Google Scholar 

  46. Nazockdast H (2016) Morphology and structure of polymer blends containing nanofillers. In: Encyclopedia of polymer blends, vol 3, chp 7, pp. 401–482

    Chapter  Google Scholar 

  47. Rathod N, Hatzikiriakos SG (2004) The effect of surface energy of boron nitride on polymer processability. Polym Eng Sci 44:1543–1550

    Article  CAS  Google Scholar 

  48. Gomari S, Ghasemi I, Karrabi M, Azizi H (2012) Organoclay localization in polyamide 6/ethylene-butene copolymer grafted maleic anhydride blends: the effect of different types of organoclay. J Polym Res 19:9769

    Article  Google Scholar 

  49. Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87:133106

    Article  Google Scholar 

  50. Pietrak K, Wisniewski TS (2015) A review of models for effective thermal conductivity of composite materials. J Power Technol 95:14

    CAS  Google Scholar 

  51. He H, Fu R, Han Y, Shen Y, Song X (2007) Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. J Mater Sci 42:6749–6754. https://doi.org/10.1007/s10853-006-1480-y

    Article  CAS  Google Scholar 

  52. Gaska K, Kmita G, Rybak A, Sekula R, Goc K, Kapusta C (2015) Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity. J Mater Sci 50:2510–2516. https://doi.org/10.1007/s10853-014-8809-8

    Article  CAS  Google Scholar 

  53. Pal R (2008) On the Lewis-Nielsen model for thermal/electrical conductivity of composites. Compos Part A Appl Sci Manuf 39:718–726

    Article  Google Scholar 

  54. Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A (2017) Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Test 57:101–106

    Article  CAS  Google Scholar 

  55. Agari Y, Uno T (1985) Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci 30:2225–2235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sunny Leung and his research assistant Ms. Pardis Ghahramani for their technical support with the conductivity tests and also Dr. Mir Karim Razavi Aghjeh for his support with the rheological tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nazockdast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramani, N., Seyed Esfahani, S.A., Mehranpour, M. et al. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride. J Mater Sci 53, 16146–16159 (2018). https://doi.org/10.1007/s10853-018-2746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2746-x

Keywords

Navigation