Skip to main content
Log in

Effects of crystal structures and intermolecular interactions on charge transport properties of organic semiconductors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effects of the packing configuration and intermolecular interaction on the transport properties are investigated based on density functional theory. Molecular design from the standpoint of a quantum-chemical view is helpful to engender favorable molecular packing motifs. The transfer integral along the orientation with π–π overlap is much larger than other directions without π–π overlap, and the mobility along this orientation is higher than that along other directions. The intermolecular interaction analyses demonstrate that hydrogen bonds play a crucial role with strong electrostatic interactions in charge transfer. There will be a synergistic relationship when the π–π stacking and intermolecular interaction coexist in the same direction. It turns out that intermolecular interactions are responsible for charge transport, while π–π stacking interactions dominate donor–acceptor transport. Incorporating the understanding of the molecular packing motifs and intermolecular interactions into the design of organic semiconductors can assist in the development of novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Zhang W, Zhong X, Zhao Y (2012) Electron mobilities of n-type organic semiconductors from time-dependent wavepacket diffusion method: pentacenequinone derivatives. J Phys Chem A 116(46):11075–11082

    Article  Google Scholar 

  2. Horowitz G, Hajlaoui ME (2000) Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv Mater 12(14):1046–1050

    Article  Google Scholar 

  3. Torsi L, Magliulo M, Manoli K, Palazzo G (2013) Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev 42(22):8612–8628

    Article  Google Scholar 

  4. Unni KNN, Dabos-Seignon S, Pandey AK, Nunzi JM (2006) Influence of the polymer dielectric characteristics on the performance of pentacene organic field-effect transistors. J Mater Sci 41(2):317–322. https://doi.org/10.1016/j.sse.2007.08.001

    Article  Google Scholar 

  5. Lee KS, Lee DU, Dong CC, Kim TW, Ryu ED, Sang WK, Lim JS (2011) Organic light-emitting devices fabricated utilizing core/shell CdSe/ZnS quantum dots embedded in a polyvinylcarbazole. J Mater Sci 46(5):1239–1243. https://doi.org/10.1007/s10853-010-4903-8

    Article  Google Scholar 

  6. Su B, Button TW, Ponton CB (2004) Control of the particle size and morphology of hydrothermally synthesised lead zirconate titanate powders. J Mater Sci 39(21):6439–6447. https://doi.org/10.1023/B:JMSC.0000044881.35754.ea

    Article  Google Scholar 

  7. Ondarse-Alvarez D, Oldani N, Tretiak S, Fernandez-Alberti S (2014) Computational study of photoexcited dynamics in bichromophoric cross-shaped oligofluorene. J Phys Chem A 118(45):10742–10753

    Article  Google Scholar 

  8. Hao Y, Yang X, Zhou M, Cong J, Wang X, Hagfeldt A, Sun L (2011) Molecular design to improve the performance of donor–π acceptor Near-IR organic dye-sensitized solar cells. Chemsuschem 4(11):1601–1605

    Article  Google Scholar 

  9. Xiao J, Azuma Y, Liu Y, Li G, Wei F, Tan KJ, Kloc C, Zhang H, Majima Y, Zhang Q (2013) Synthesis, structure, physical properties, and displacement current measurement of an n-type organic semiconductor: 2:3,5:6-Bis(1,1-dicyanoethylene-2,2-dithiolate)-quinone. Aust J Chem 65(12):1674–1678

    Article  Google Scholar 

  10. Wen SH, Deng WQ, Han KL (2010) Revealing quantitative structure-activity relationships of transport properties in acene and acene derivative organic materials. Phys Chem Chem Phys 12(32):9267–9275

    Article  Google Scholar 

  11. Delgado MCR, Pigg KR, Filho DADS, Gruhn NE, Sakamoto Y, Suzuki T, Osuna RM, Casado J, Hernández V, Navarrete JTL (2009) Impact of perfluorination on the charge-transport parameters of oligoacene crystals. J Am Chem Soc 131(4):1502–1512

    Article  Google Scholar 

  12. Zhang MX, Zhao GJ (2012) Modification of n-type organic semiconductor performance of perylene diimides by substitution in different positions: two-dimensional π-stacking and hydrogen bonding. Chemsuschem 5(5):879–887

    Article  Google Scholar 

  13. Marseglia EA, Grepioni F, Tedesco E, Braga D (2000) Solid state conformation and crystal packing of methyl-substituted quaterthiophenes. Mol Cryst Liq Cryst Sci Technol 348(1):137–151

    Article  Google Scholar 

  14. Long MQ, Tang L, Wang D, Wang L, Shuai Z (2009) Theoretical predictions of size-dependent carrier mobility and polarity in graphene. J Am Chem Soc 131(49):17728–17729

    Article  Google Scholar 

  15. Zheng D, Zhang M, Zhao G (2017) The promotion effects of thionation and isomerization on charge carrier mobility in naphthalene diimide crystals. Phys Chem Chem Phys 19(41):28175–28181

    Article  Google Scholar 

  16. Meng H, Perepichka DF, Bendikov M, Wudl F, Pan GZ, Yu W, Dong W, Brown S (2003) Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J Am Chem Soc 125(49):15151–15162

    Article  Google Scholar 

  17. Jurchescu OD, Baas J, Palstra TTM (2004) The effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett 84(16):3061–3063

    Article  Google Scholar 

  18. Wang C, Dong H, Jiang L, Hu W (2017) Organic semiconductor crystals. Chem Soc Rev 47:422–500

    Article  Google Scholar 

  19. Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA (2012) Indigo–a from jeans to semiconductors: Indigo—A natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24(3):375–380

    Article  Google Scholar 

  20. Zhang MX, Zhao GJ (2012) Modification of n-type organic semiconductor performance of perylene diimides by substitution in different positions: two-dimensional π-stacking and hydrogen bonding. Chemsuschem 5(5):879–887

    Article  Google Scholar 

  21. Sánchezcarrera RS, Paramonov P, Day GM, Coropceanu V, Brédas JL (2010) Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. J Am Chem Soc 132(41):14437–14446

    Article  Google Scholar 

  22. Yi Y, Zhu L, Brédas JL (2012) Charge-transport parameters of acenedithiophene crystals: realization of one-, Two-, or three-dimensional transport channels through alkyl and phenyl derivatizations. J Phys Chem C 116(8):5215–5224

    Article  Google Scholar 

  23. Wen SH, Li A, Song J, Deng WQ, Han KL, Iii WAG (2009) First-principles investigation of anistropic hole mobilities in organic semiconductors. J Phys Chem B 113(26):8813–8819

    Article  Google Scholar 

  24. Ishii H, Kobayashi N, Hirose K (2013) Strong anisotropy of momentum-relaxation time induced by intermolecular vibrations of single-crystal organic semiconductors. Phys Rev B 88(20):1352–1355

    Article  Google Scholar 

  25. Shi Y, Wei H, Liu Y (1083) Different electronic and charge-transport properties of four organic semiconductors Tetraazaperopyrenes derivatives. J Mol Struct 2015(1083):65–71

    Google Scholar 

  26. Shi YR, Wei HL, Shi YT, Liu YF (2017) Theoretical study of pyrene derivatives as high performance organic semiconductor materials ☆. Synth Met 223:218–225

    Article  Google Scholar 

  27. Butko VY, Chi X, Ramirez AP (2003) Free-standing tetracene single crystal field effect transistor. Solid State Commun 128(11):431–434

    Article  Google Scholar 

  28. Farina L, Brillante A, Valle RGD, Venuti E, Amboage M, Syassen K (2003) Pressure-induced phase transition in pentacene. Chem Phys Lett 375(5–6):490–494

    Article  Google Scholar 

  29. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111(30):8940–8945

    Article  Google Scholar 

  30. Meléndez RE, Hamilton AD (1998) Hydrogen-bonded ribbons, tapes and sheets as motifs for crystal engineering. Top Curr Chem 198:97–129

    Article  Google Scholar 

  31. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) ChemInform abstract: evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. Cheminform 20(20):1023–1028

    Article  Google Scholar 

  32. H PSCA, Matthias BF (2007) Cover picture: aromaticity: molecular-orbital picture of an intuitive concept. Chemistry 13(22):6321–6328

    Article  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, Revision A.02, Gaussian, Inc

  34. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Article  Google Scholar 

  35. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  Google Scholar 

  36. Ziegler T, Rauk A, Baerends EJ (1977) On the calculation of multiplet energies by the hartree-fock-slater method. Theor Chim Acta 43(3):261–271

    Article  Google Scholar 

  37. Podzorov V, Sysoev SE, Loginova E, Pudalov VM (2003) Single-crystal organic field effect transistors with the hole mobility ∼ 8 cm2/Vs. Appl Phys Lett 83(17):3504–3506

    Article  Google Scholar 

  38. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339–2350

    Article  Google Scholar 

  39. Yang X, Li Q, Shuai Z (2007) Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems. Nanotechnology 18(42):424029

    Article  Google Scholar 

  40. Valeev EF, Coropceanu V, Filho DADS, Salman S, Brédas JL (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128(30):9882–9886

    Article  Google Scholar 

  41. Glowacki ED, Leonat L, Voss G, Bodea M, Bozkurt Z, Irimia-Vladu M, Bauer S, Sariciftci NS (2011) Natural and nature-inspired semiconductors for organic electronics. Proc SPIE Int Soc Opt Eng 8118(3):81180M–81180M-10

    Google Scholar 

  42. Koyama H, Scheel HJ, Laves F (1966) Kristallstrukturen organischer Pigmentfarbstoffe. I. γ-Chinacridon C 20 H 12 O 2 N 2. Naturwissenschaften 53(24):700–700

    Article  Google Scholar 

  43. Senju T, Sakai M, Mizuguchi J (2007) Cohesion of γ-quinacridone and 2,9-dimethylquinacridone in the solid state. Dyes Pigments 75(2):449–453

    Article  Google Scholar 

  44. Buchsbaum C, Schmidt MU (2010) Rietveld refinement of a wrong crystal structure. Acta Crystallogr B 63(6):926–932

    Article  Google Scholar 

  45. Zhao GJ, Han KL (2013) Hydrogen bonding in the electronic excited state. Acc Chem Res 45(3):404–413

    Article  Google Scholar 

  46. Seeman NC, Rosenberg JM, Suddath FL, Kim JJ, Rich A (1976) RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3′,5′-uridine hexahydrate. J Mol Biol 104(1):109–144

    Article  Google Scholar 

Download references

Acknowledgements

The authors received support from National Natural Science Foundation of China (Grant No. 11274096), University Science, Technology Innovation Team Support Project of Henan Province (Grant No. 13IRTSTHN016), and Foundation of He’nan Educational Committee University Science (Grant No. 17A140019). The calculation about this work was supported by The High Performance Computing Center of Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fang Liu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, YR., Wei, HL., Jia, XB. et al. Effects of crystal structures and intermolecular interactions on charge transport properties of organic semiconductors. J Mater Sci 53, 15569–15587 (2018). https://doi.org/10.1007/s10853-018-2719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2719-0

Keywords

Navigation