Skip to main content
Log in

Design of electrical probe memory with TiN capping layer

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The concept of electrical probe memory using phase-change media has recently received considerable attention due to its promising potential for next-generation data storage device. However, the physical performances of the conventional electrical probe memory are strongly limited by its diamond-like carbon capping layer ascribed to its large contact resistance and sharp difference between the theoretically optimized properties values and the experimentally measured values. Therefore, the diamond-like carbon capping layer is replaced by a titanium nitride layer here, and the modified device architecture is re-optimized by a newly developed three-dimensional model, resulting in a media stack consisting of a 2-nm Ge2Sb2Te5 layer sandwiched by 2-nm titanium nitride layer with an electrical conductivity of 2 × 105 Ω−1 m−1 and a thermal conductivity of 12 W m−1 K−1, and a 40-nm titanium nitride bottom layer with an electrical conductivity of 2 × 106 Ω−1 m−1 and a thermal conductivity of 12 W m−1 K−1. The advantageous features of such a device on the writing of both crystalline and amorphous bits are also demonstrated according to the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang L, Yang C-H, Wen J, Gong S-D, Peng Y-X (2016) Overview of probe-based storage technologies. Nanoscale Res Lett 11:342–353

    Article  Google Scholar 

  2. Wright CD, Marylyn M, Aziz MM (2006) Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans Nanotechnol 5:50–61

    Article  Google Scholar 

  3. Wang L, Wen J, Yang C-H, Gai S, Peng Y-X (2015) The route for ultra-high recording density using probe-based data storage device. Nano 10:1550118-12

    Google Scholar 

  4. Yang F, Xu L, Chen J, Xu J, Yao Y, Ma ZY, Chen KJ (2016) Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy. Nanotechnology 27:035706–035707

    Article  Google Scholar 

  5. Pandian R, Kooi BJ, Palasantzas G, De Hosson JTM, Pauza A (2007) Nanoscale electrolytic switching in phase-change chalcogenide films. Adv Mater 19:4431–4437

    Article  Google Scholar 

  6. Wang L, Gong S-D, Yang C-H, Wen J (2016) Towards low energy consumption data storage era using phase-change probe memory with TiN bottom electrode. Nanotechnol Rev 5:455–460

    Google Scholar 

  7. Wang L, Gong S, Yang C, Wen J (2016) Electrical resistivity optimization of diamond-like carbon thin film for electrical probe storage application. Nanotechnol Rev 5:461–466

    Google Scholar 

  8. Wang L, Gong S, Yang C, Wen J (2017) The experimental demonstration of the optimized electrical probe memory for ultra-high density recording. Recent Pat Nanotechnol 11:70–74

    Article  Google Scholar 

  9. Wang L, Wright CD, Aziz MM, Ying J, Yang G-W (2014) A contact resistance model for scanning probe phase-change memory. J Micromech Microeng 24:037001–037006

    Article  Google Scholar 

  10. Mandelli D, Caravati S, Bernasconi M (2012) Density functional study of the TiN/Ge2Sb2Te5 interface. Phys Status Solidi 249:2140–2144

    Article  Google Scholar 

  11. Kim HJ, Choi SK, Kang SH, Oh KH (2007) Structural phase transitions of Ge2Sb2Te5 cells with TiN electrodes using a homemade W heater tip. Appl Phys Lett 90:083103-3

    Google Scholar 

  12. Redaelli A, Pirovano A, Pellizzer F, Lacaita AL, Ielmini D, Bez R (2004) Electronic switching effect and phase-change transition in chalcogenide materials. IEEE Electron Device Lett 25:684–686

    Article  Google Scholar 

  13. Wei J-S, Jiao X-B, Gan F-X, Xiao M-F (2008) Laser pulse induced bumps in chalcogenide phase change films. J Appl Phys 103:124516-5

    Google Scholar 

  14. Liu Y, Aziz MM, Shalini A, Wright CD, Hicken RJ (2012) Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses. J Appl Phys 112:123526-14

    Google Scholar 

  15. Gallo ML, Athmanathan A, Krebs D, Sebastian A (2016) Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells. J Appl Phys 119:025704–025709

    Article  Google Scholar 

  16. Kaes M, Gallo ML, Sebastian A, Salinga M, Krebs D (2015) High-field electrical transport in amorphous phase-change materials. J Appl Phys 118:135707–135711

    Article  Google Scholar 

  17. Liang H-L, Xu J, Zhou D-Y, Sun X, Chu S-C, Bai YZ (2016) Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram Int 42:2642–2647

    Article  Google Scholar 

  18. Jeyachandran YL, Narayandass SK, Mangalaraj D, Areva S, Mielczarski JA (2007) Properties of titanium nitride films prepared by direct current magnetron sputtering. Mater Sci Eng A 445–446:223–226

    Article  Google Scholar 

  19. Yokota K, Nakamura K, Kasuya T, Mukai K, Ohnishi M (2004) Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method. J Phys D Appl Phys 37:1095–1101

    Article  Google Scholar 

  20. Yang Z-Y, Chen Y-H, Liao B-H, Chen K-P (2016) Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering. Opt Mater Express 6:540–551

    Article  Google Scholar 

  21. Van Bui H, Kovalgin AY, Wolters RAM (2013) On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films. Appl Surf Sci 269:45–49

    Article  Google Scholar 

  22. Samani MK, Ding XZ, Khosravian N, Amin-Ahmadi B, Yi Y, Chen G, Neyts EC, Bogaerts A, Tay BK (2015) Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Films 578:133–138

    Article  Google Scholar 

  23. Simpson RE, Krbal M, Fons P, Kolobov AV, Tominaga J, Uruga T, Tanida H (2009) Toward the ultimate limit of phase-change in Ge2Sb2Te5. Nano Lett 10:414–419

    Article  Google Scholar 

  24. Wright CD, Wang L, Shah P, Aziz MM, Varesi E, Bez R, Moroni M, Cazzaniga F (2011) The design of rewritable ultrahigh density scanning-probe phase-change mmories. IEEE Trans Nanotechnol 10:900–912

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports of the Natural Science Foundation of Jiangxi Science and Technology Department (Grant No. 20151BAB217003) and the Foundation of Jiangxi Education Department (Grant No. GJJ170598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wen, J., Yang, C. et al. Design of electrical probe memory with TiN capping layer. J Mater Sci 53, 15549–15558 (2018). https://doi.org/10.1007/s10853-018-2707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2707-4

Keywords

Navigation