Skip to main content
Log in

Rare-earth-doped optical nanothermometer in visible and near-infrared regions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the development of optical nanothermometry in biomedical sciences, it is urgent to develop near-infrared region (NIR) nanothermometers which could detect the temperature in deep tissue levels. In this study, NaYF4:Yb,Er@NaGdF4:Nd nanoparticles were successfully synthesized. The luminescence properties and the mechanism of formation of dumbbell morphology of NaYF4:Yb,Er@NaGdF4:Nd were investigated. As a novel optical nanothermometer, dumbbell-shaped NaYF4:Yb,Er@NaGdF4:Nd nanoparticles exhibited high sensitivity in the visible and NIR regions. These data seem to be promising in terms of expanding the optical detection range of non-contact fluorescence temperature sensors and satisfy the requirements for temperature detection in various biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Savchuk O, Carvajal JJ, De la Cruz LG, Haro-González P, Aguiló M, Díaz F (2016) Luminescence thermometry and imaging in the second biological window at high penetration depth with Nd:KGd(WO4) 2 nanoparticles. J Mater Chem C 4:7397–7405

    Article  Google Scholar 

  2. Wawrzynczyk D, Bednarkiewicz A, Nyk M, Strek W, Samoc M (2012) Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale 4:6959–6961

    Article  Google Scholar 

  3. Carrasco E, del Rosal B, Sanz-Rodríguez F, de la Fuente ÁJ, Gonzalez PH, Rocha U, Kumar KU, Jacinto C, Solé JG, Jaque D (2015) Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv Funct Mater 25:615–626

    Article  Google Scholar 

  4. Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869

    Article  Google Scholar 

  5. Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN (2016) Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc 138:16192–16195

    Article  Google Scholar 

  6. Marciniak L, Prorok K, Frances-Soriano L, Perez-Prieto J, Bednarkiewicz A (2016) A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8:5037–5042

    Article  Google Scholar 

  7. Rai VK (2007) Temperature sensors and optical sensors. Appl Phys B 88:297–303

    Article  Google Scholar 

  8. Cortelletti P, Skripka A, Facciotti C, Pedroni M, Caputo G, Pinna N, Quintanilla M, Benayas A, Vetrone F, Speghini A (2018) Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. Nanoscale 10:2568–2576

    Article  Google Scholar 

  9. Ceron EN, Ortgies DH, Del Rosal B, Ren F, Benayas A, Vetrone F, Ma D, Sanz-Rodriguez F, Sole JG, Jaque D, Rodriguez EM (2015) Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv Mater 27:4781–4787

    Article  Google Scholar 

  10. del Rosal B, Ximendes E, Rocha U, Jaque D (2017) In vivo luminescence nanothermometry: from materials to applications. Adv Opt Mater 5:1600508–1600521

    Article  Google Scholar 

  11. Kalytchuk S, Polakova K, Wang Y, Froning JP, Cepe K, Rogach AL, Zboril R (2017) Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing. ACS Nano 11:1432–1442

    Article  Google Scholar 

  12. McLaurin EJ, Vlaskin VA, Gamelin DR (2011) Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. J Am Chem Soc 133:14978–14980

    Article  Google Scholar 

  13. Zhou D, Lin M, Liu X, Li J, Chen Z, Yao D, Sun H, Zhang H, Yang B (2013) Conducting the temperature-dependent conformational change of macrocyclic compounds to the lattice dilation of quantum dots for achieving an ultrasensitive nanothermometer. ACS Nano 7:2273–2283

    Article  Google Scholar 

  14. Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S (2017) Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 5:4365–4392

    Article  Google Scholar 

  15. Wang Z, Zhang P, Yuan Q, Xu X, Lei P, Liu X, Su Y, Dong L, Feng J, Zhang H (2015) Nd(3)(+)-sensitized NaLuF(4) luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. Nanoscale 7:17861–17870

    Article  Google Scholar 

  16. Gota C, Uchiyama S, Yoshihara T, Tobita S, Ohwada T (2008) Temperature-dependent fluorescence lifetime of a fluorescent polymeric thermometer, poly(N-isopropylacrylamide), labeled by polarity and hydrogen bonding sensitive 4-sulfamoyl-7-aminobenzofurazan. J Phys Chem B 112:2829–2836

    Article  Google Scholar 

  17. Wu Y, Liu J, Ma J, Liu Y, Wang Y, Wu D (2016) Ratiometric nanothermometer based on rhodamine dye-incorporated F127-melamine-formaldehyde polymer nanoparticle: preparation, characterization, wide-range temperature sensing, and precise intracellular thermometry. ACS Appl Mater Interfaces 8:14396–14405

    Article  Google Scholar 

  18. Wang Z, Hu M, Hu S, Han J, Wang Z, Chen Y, Huang C, Fu L, Zhang Z (2018) Facile one-pot synthesis of multifunctional polyphosphazene nanoparticles as multifunctional platform for tumor imaging. Anal Bioanal Chem 410:3723–3730

    Article  Google Scholar 

  19. Suo H, Guo C, Zheng J, Zhou B, Ma C, Zhao X, Li T, Guo P, Goldys EM (2016) Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix. ACS Appl Mater Interfaces 8:30312–30319

    Article  Google Scholar 

  20. Miyagawa T, Fujie T, Ferdinandus, Vo Doan TT, Sato H, Takeoka S (2016) Glue-free stacked luminescent nanosheets enable high-resolution ratiometric temperature mapping in living small animals. ACS Appl Mater Interfaces 8:33377–33385

    Article  Google Scholar 

  21. Kamimura M, Matsumoto T, Suyari S, Umezawa M, Soga K (2017) Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF 4 nanoparticles. J Mater Chem B 5:1917–1925

    Article  Google Scholar 

  22. Wortmann L, Suyari S, Ube T, Kamimura M, Soga K (2018) Tuning the thermal sensitivity of β-NaYF 4: Yb 3+, Ho 3+, Er 3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window. J Lumin 198:236–242

    Article  Google Scholar 

  23. Tong L, Li X, Hua R, Cheng L, Sun J, Zhang J, Xu S, Zheng H, Zhang Y, Chen B (2017) Optical temperature sensing properties of Yb 3+/Tm 3+ co-doped NaLuF 4 crystals. Curr Appl Phys 17:999–1004

    Article  Google Scholar 

  24. Li D, Shao Q, Dong Y, Jiang J (2014) Temperature sensitivity and stability of NaYF 4: Yb 3+, Er 3+ core-only and core–shell upconversion nanoparticles. J Alloys Compd 617:1–6

    Article  Google Scholar 

  25. Lu H, Hao H, Shi G, Gao Y, Wang R, Song Y, Wang Y, Zhang X (2016) Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+based on thermal, quasi-thermal and non-thermal coupling levels. RSC Adv 6:55307–55311

    Article  Google Scholar 

  26. Zheng K, Song W, He G, Yuan Z, Qin W (2015) Five-photon UV upconversion emissions of Er(3)(+) for temperature sensing. Opt Express 23:7653–7658

    Article  Google Scholar 

  27. Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD (2013) Nanometre-scale thermometry in a living cell. Nature 500:54–58

    Article  Google Scholar 

  28. Zhaojing B, Min H, Yiming Z, Yiqing W, Jing W, Zhenxi Z (2018) Double NIR laser stimulation and enhancing the thermal sensitivity of Er 3+/Tm 3+/Nd 3+ doped multilayer core–shell nanoparticles. Nanotechnology 29:355704–355712

    Article  Google Scholar 

  29. Zhang Y, Chen B, Xu S, Li X, Zhang J, Sun J, Zheng H, Tong L, Sui G, Zhong H, Xia H, Hua R (2017) Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy. Sci Rep 7:11849–11860

    Article  Google Scholar 

  30. Zhu X, Feng W, Chang J, Tan YW, Li J, Chen M, Sun Y, Li F (2016) Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun 7:10437–10446

    Article  Google Scholar 

  31. Yang X, Yang Y, Fu L, Zou M, Li Z, Cao A, Yuan Q (2018) An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation. Adv Funct Mater 28:1704505–1704513

    Article  Google Scholar 

  32. Ximendes EC, Rocha U, Sales TO, Fernández N, Sanz-Rodríguez F, Martín IR, Jacinto C, Jaque D (2017) In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv Funct Mater 27:1702249–1702257

    Article  Google Scholar 

  33. Yang J, Liu Y, Zhao Y, Gong Z, Zhang M, Yan D, Zhu H, Liu C, Xu C, Zhang H (2017) Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem Mater 29:8119–8131

    Article  Google Scholar 

  34. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44:1608–1634

    Article  Google Scholar 

  35. Zhang C, Yang L, Zhao J, Liu B, Han MY, Zhang Z (2015) White-light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power. Angew Chem 54:11531–11535

    Article  Google Scholar 

  36. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry 18:2335–2341

    Article  Google Scholar 

  37. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24:5755–5761

    Article  Google Scholar 

  38. Pang X, Wang J, Tan X, Guo F, Lei M, Ma M, Yu M, Tan F, Li N (2016) Dual-modal imaging-guided theranostic nanocarriers based on indocyanine green and mTOR inhibitor rapamycin. ACS Appl Mater Interfaces 8:13819–13829

    Article  Google Scholar 

  39. Xu X, Wang Z, Lei P, Yu Y, Yao S, Song S, Liu X, Su Y, Dong L, Feng J, Zhang H (2015) α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl Mater Interfaces 7:20813–20819

    Article  Google Scholar 

  40. Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH (2017) Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano 11:3289–3297

    Article  Google Scholar 

  41. Chen G, Liu H, Somesfalean G, Liang H, Zhang Z (2009) Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 20:385704–385710

    Article  Google Scholar 

  42. Ma D, Xu X, Hu M, Wang J, Zhang Z, Yang J, Meng L (2016) Rare-earth-based nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging. Chem Asian J 11:1050–1058

    Article  Google Scholar 

  43. Ma D, Meng L, Chen Y, Hu M, Chen Y, Huang C, Shang J, Wang R, Guo Y, Yang J (2015) NaGdF4:Yb(3+)/Er(3+)@NaGdF4:Nd(3+)@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging. ACS Appl Mater Interfaces 7:16257–16265

    Article  Google Scholar 

  44. Ximendes EC, Santos WQ, Rocha U, Kagola UK, Sanz-Rodriguez F, Fernandez N, Gouveia-Neto Ada S, Bravo D, Domingo AM, del Rosal B, Brites CD, Carlos LD, Jaque D, Jacinto C (2016) Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett 16:1695–1703

    Article  Google Scholar 

  45. Tchounwou C, Sinha SS, Viraka Nellore BP, Pramanik A, Kanchanapally R, Jones S, Chavva SR, Ray PC (2015) Hybrid theranostic platform for second near-ir window light triggered selective two-photon imaging and photothermal killing of targeted melanoma cells. ACS Appl Mater Interfaces 7:20649–20656

    Article  Google Scholar 

  46. Plakhotnik T, Gruber D (2010) Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Phys Chem Chem Phys 12:9751–9756

    Article  Google Scholar 

  47. Brites CD, Xie X, Debasu ML, Qin X, Chen R, Huang W, Rocha J, Liu X, Carlos LD (2016) Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat Nanotechnol 11:851–856

    Article  Google Scholar 

  48. Liu D, Xu X, Du Y, Qin X, Zhang Y, Ma C, Wen S, Ren W, Goldys EM, Piper JA, Dou S, Liu X, Jin D (2016) Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun 7:10254–10261

    Article  Google Scholar 

  49. Sheng Y, Liao L-D, Bandla A, Liu Y-H, Thakor N, Tan MC (2016) Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging. ACS Biomater Sci Eng 2:809–817

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61335012 and 61727823), the Fundamental Funds for the Central Universities and the China Scholarship Council. The TEM was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University; the authors thank Mr. Chuansheng Ma and Prof. Guang Yang for their help in using TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Ba, Z., Zheng, Y. et al. Rare-earth-doped optical nanothermometer in visible and near-infrared regions. J Mater Sci 53, 15107–15117 (2018). https://doi.org/10.1007/s10853-018-2702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2702-9

Keywords

Navigation