Skip to main content
Log in

Hybridization of MWCNTs and reduced graphene oxide on random and electrically aligned nanocomposite membrane for selective separation of O2/N2 gas pair

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This present study demonstrates the development of high-performance polysulfone (PSf) hybrid mixed matrix membranes (MMMs) through the collaborative inclusion of multiwalled carbon nanotubes (CNTs) and reduced graphene oxide (rGO). The nanofillers are aligned by virtue of an AC electric field in order to formulate a multifunctional composite membrane structure for selective separation of O2/N2 gas. Proper alignment of the conducting nanofillers within PSf was confirmed by utilizing different microscopy and spectroscopy techniques. Hybridization of CNTS and rGO resulted in concurrent enhancement of permeability as well as the selectivity of the neat membrane. The inclusion of rGO nanosheets established a long, tortuous path hindering the permeation of gas molecules possessing the larger molecular size, while CNTs-filled MMM achieved better permeation due to their favorable intrinsic structural characteristics. The overall performance of the aligned hybrid membranes was found to be significant in contrary to single filler-based membrane systems (PSf/CNTs and PSf/rGO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures. Korean J Chem Eng 34:2119–2134

    Article  Google Scholar 

  2. Aroon MA, Ismail AF, Matsuura T, Rahmati MM (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75:229–242

    Article  Google Scholar 

  3. Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Carbon nanotubes as potential candidate for separation of H2–CO2 gas pairs. Int J Hydrogen Energy 42:29283–29299

    Article  Google Scholar 

  4. Zahri K, Goh PS, Ismail AF (2016) The incorporation of GO into polysulfone mixed matrix membrane for CO2/CH4 separation. In: IOP conference series: earth environmental science, vol 36

  5. Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep Purif Technol 188:431–450

    Article  Google Scholar 

  6. Sun H, Wang T, Xu Y, Gao W, Li P, Niu QJ (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in situ polymerization for CO2 separation. Sep Purif Technol 177:327–336

    Article  Google Scholar 

  7. Ebrahimi S, Berneti SM, Peydayesh M, Akhlaghian F, Mohammadi T (2016) PVA/PES amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modelling. Chem Eng Res Des 109:647–656

    Article  Google Scholar 

  8. Ismail AF, Goh PS, Sanipa SM, Aziz M (2009) Review transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26

    Article  Google Scholar 

  9. Shen J, Liu G, Huang K, Jin W, Lee KR, Xu N (2015) Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew Commun 127:588–592

    Article  Google Scholar 

  10. Sanip SM, Ismail AF, Goh PS, Soga T, Tanemura M, Yasuhiko H (2011) Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Sep Purif Technol 78:208–213

    Article  Google Scholar 

  11. Ge L, Zhu Z, Rudolph V (2011) Enhanced gas permeability by fabricating functionalized multi-walled carbonnanotubes and polyethersulfone nanocomposite membrane. Sep Purif Technol 78:76–82

    Article  Google Scholar 

  12. Dong G, Wang J, Zhang Y, Chen V, Liu J (2016) Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Membr Sci 520:860–868

    Article  Google Scholar 

  13. Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide-carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513

    Article  Google Scholar 

  14. Ramesh S, Khandelwal S, Rhee KY, Hui D (2018) Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos B 138:45–54

    Article  Google Scholar 

  15. Li Zan, Fan Genlian, Guo Qiang, Li Zhiqiang, Yishi Su, Zhang Di (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427

    Article  Google Scholar 

  16. Li X, Maa L, Zhang H, Wang S, Jiang Z (2015) Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J Membr Sci 479:1–10

    Article  Google Scholar 

  17. Zornoza B, Seoane B, Zamaro JM, Tllez C, Coronas J (2011) Combination of MOFs and zeolites for mixed-matrix membranes. Chem Phys Chem 12:2781–2785

    Article  Google Scholar 

  18. Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94–102

    Article  Google Scholar 

  19. Sarfraz M, Shammakh MB (2016) Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J Membr Sci 514:35–43

    Article  Google Scholar 

  20. Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127

    Article  Google Scholar 

  21. Kumar S, Vijay YK (2012) Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int J Hydrogen Energy 37:3914–3921

    Article  Google Scholar 

  22. Kumara S, Sharma A, Tripathi B (2010) Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes. Micron 41:909–914

    Article  Google Scholar 

  23. Goh PS, Ismail AF (2014) Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Compos A 56:103–126

    Article  Google Scholar 

  24. Emiru TF, Ayele DW (2017) Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic Appl Sci 4:74–79

    Article  Google Scholar 

  25. Bykkam S, Rao KV, Thunugunta T (2013) Synthesis and characterization of graphene oxide and its antimicrobial activity against klebseilla and staphylococus. Int J Adv Biotechnol Res 4:1005–1009

    Google Scholar 

  26. Kuan HC, Ma CM, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65:1703–1710

    Article  Google Scholar 

  27. Cao A, Liang J, Wu D, Wei B (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344:13–17

    Article  Google Scholar 

  28. Chang CY, Phillips EM, Liang R, Tozer SW, Wang B, Zhang C, Chiu HT (2013) Alignment and properties of carbon nanotube buckypaper/liquid crystalline polymer composites. Appl Polym Sci 168:1360–1368

    Google Scholar 

  29. Lu H, Zhang J, Luo J, Gong W, Li C, Li Q, Zhang K, Hu M, Yao Y (2017) Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Compos A 102:1–8

    Article  Google Scholar 

  30. Sanchez S, Pumera M, Bregas EF, Bartrolı J, Esplandiu MJ (2009) Carbon nanotube/polysulfone soft composites: preparation characterization and application for electrochemical sensing of biomarkers. Phys Chem Chem Phys 11:7721–7728

    Article  Google Scholar 

  31. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim JK (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717

    Article  Google Scholar 

  32. Kumar P, Yu S, Shahzad F, Hong SM, Kim YH, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128

    Article  Google Scholar 

  33. Oliva-Avile AI, Avile F, Sosa V (2011) Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 4(9):2989–2997

    Article  Google Scholar 

  34. Li B, Dong S, Wang X, Fang J (2017) Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos Sci Technol 147:52–61

    Article  Google Scholar 

  35. Xue Q, Pan X, Li X, Zhang J, Guo Q (2017) Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons. Nanotechnology 28:1–10

    Article  Google Scholar 

  36. Sarfraz M, Shammakh MB (2016) Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J Membr Sci 514:35–43

    Article  Google Scholar 

  37. Li Z, Fan G, Guo Q, Zhang D (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427

    Article  Google Scholar 

  38. Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49:26–34

    Article  Google Scholar 

  39. Sharma A, Tripathi B, Vijay YK (2010) Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membr Sci 361:89–95

    Article  Google Scholar 

  40. Kim NH, Kuilab T, Lee JH (2014) Enhanced mechanical properties of a multiwall carbon nanotube attached pre-stitched graphene oxide filled linear low density polyethylene composite. J Mater Chem A 2:2681–2689

    Article  Google Scholar 

  41. Tang LC, Yan D, Zhao L, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  Google Scholar 

  42. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim JK (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos A 49:42–50

    Article  Google Scholar 

  43. Goh PS, Ismail AF, Sanip SM, Aziz M, Kassim MA (2011) Effect of dispersed multi-walled carbon nanotubes on mixed matrix membrane for O2/N2. Sep Sci Technol 46:1250–1261

    Article  Google Scholar 

  44. Zeinali S, Aryaeinezhad M (2015) Improving O2/N2 selective filtration using carbon nanotube-modified mixed-matrix membranes. Chem Eng Technol 38:2079–2086

    Article  Google Scholar 

  45. Chenar MP, Rajabi H, Pakizeh M, Sadeghi M, Bolverdi A (2013) Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. J Polym Res 20:216. https://doi.org/10.1007/s10965-013-0216-3

    Article  Google Scholar 

  46. Rodriguesa MA, Ribeiro JS, Costa ES, Miranda JL, Ferraz HC (2018) Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep Purif Technol 192:491–500

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, for financial assistance for the project. Funding was provided by Dr. Smita Mohanty (Grant No. EMR/2014/000940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchhanda S. Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S.S., Unnikrishnan, L., Mohanty, S. et al. Hybridization of MWCNTs and reduced graphene oxide on random and electrically aligned nanocomposite membrane for selective separation of O2/N2 gas pair. J Mater Sci 53, 15442–15464 (2018). https://doi.org/10.1007/s10853-018-2651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2651-3

Keywords

Navigation