Skip to main content

Advertisement

Log in

Enhanced dual-responsive shape memory nanocomposites with rapid and efficient self-healing capability

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-strength nanocomposites were prepared by in situ polymerization of 2-methoxyethyl acrylate and N,N′-dimethylacrylamide with the existence of TiO2 nanoparticles. Based on the reversible hydrogen bond network, the resultant materials showed enhanced mechanical strength, excellent shape memory effect, and superior self-healing capability. To accomplish the goal of rapid and efficient self-healing for the materials, the elevated temperature was chosen as the healing temperature, and the fracture sample could be completely repaired within 10 min with the fracture strength of 13.56 MPa and high healing efficiency of ~ 100% (MD50-T5). Combining the high strain and water-absorbing nature of materials, the recovery of the complex shape of helix structure and self-lacing process in water under physiological temperature could be programmed and finished. Thus, the dual functional elastomers could be used in coating, suturing, and possess the wide application prospects in bioengineering and smart devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  2. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28

    Article  Google Scholar 

  3. Xiao XL, Kong DY, Qiu XY, Zhang WB, Zhang FH, Liu LW, Liu YJ, Zhang S, Hu Y, Leng JS (2015) Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589

    Article  Google Scholar 

  4. Chen YK, Chen KL, Wang YH, Xu CH (2015) Biobased heat-triggered shape-memory polymers based on polylactide/epoxidized natural rubber blend system fabricated via peroxide-induced dynamic vulcanization: co-continuous phase structure, shape memory behavior, and interfacial compatibilization. Ind Eng Chem Res 54:8723–8731

    Article  Google Scholar 

  5. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  6. Leng JS, Lan X, Liu YJ, Du SY (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  Google Scholar 

  7. Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polym J 45:1904–1911

    Article  Google Scholar 

  8. Zhang YM, Wang QH, Wang C, Wang TM (2011) High-strain shape memory polymer networks crosslinked by SiO2. J Mater Chem 21:9073–9078

    Article  Google Scholar 

  9. Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S (2005) Rod-like silicate-epoxy nanocomposites. Macromol Rapid Commun 26:1445–1450

    Article  Google Scholar 

  10. Liu TY, Huang R, Qi XD, Dong P, Fu Q (2017) Facile preparation of rapidly electro-active shape memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers. Polymer 114:28–35

    Article  Google Scholar 

  11. He ZW, Satarkar N, Xie T, Cheng YT, Hilt JZ (2011) Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater 23:3192–3197

    Article  Google Scholar 

  12. Murphy EB, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35:223–251

    Article  Google Scholar 

  13. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383

    Article  Google Scholar 

  14. Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu XF, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22:9138–9146

    Article  Google Scholar 

  15. Aissa B, Haddad E, Jamroz W, Hassani S, Farahani RD, Merle PG, Therriault D (2012) Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications. Smart Mater Struct 21:105028. https://doi.org/10.1088/0964-1726/21/10/105028

    Article  Google Scholar 

  16. Ahangari MG, Fereidoon A, Jahanshahi M, Sharifi N (2014) Effect of nanoparticles on the micromechanical and surface properties of poly(urea-formaldehyde) composite microcapsules. Compos Part B-Eng 56:450–455

    Article  Google Scholar 

  17. Kratz K, Narasimhan A, Tangirala R, Moon S, Revanur R, Kundu S, Kim HS, Crosby AJ, Russell TP, Emrick T, Kolmakov G, Balazs AC (2012) Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. Nat Nanotechnol 7:87–90

    Article  Google Scholar 

  18. Schafer S, Kickelbick G (2015) Self-healing polymer nanocomposites based on Diels–Alder-reactions with silica nanoparticles: the role of the polymer matrix. Polymer 69:357–368

    Article  Google Scholar 

  19. Zhong N, Post W (2015) Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: a review. Compos Part A-Appl S 69:226–239

    Article  Google Scholar 

  20. Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C (2017) Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels–Alder reaction and thermal movement of molecular chains. Polymer 124:48–59

    Article  Google Scholar 

  21. Kang J, Son D, Wang GN, Liu Y, Lopez J, Kim Y, Oh JY, Katsumata T, Mun J, Lee Y, Jin L, Tok JB, Bao Z (2018) Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater 30:1706846. https://doi.org/10.1002/adma.201706846

    Article  Google Scholar 

  22. Cao J, Lu C, Zhuang J, Liu M, Zhang X, Yu Y, Tao Q (2017) Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew Chem Int Ed Engl 56:8795–8800

    Article  Google Scholar 

  23. Wang D, Guo J, Zhang H, Cheng B, Shen H, Zhao N, Xu J (2015) Intelligent rubber with tailored properties for self-healing and shape memory. J Mater Chem A 3:12864–12872

    Article  Google Scholar 

  24. Ni B, Xie HL, Tang J, Zhang HL, Chen EQ (2016) A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers. Chem Commun (Camb) 52:10257–10260

    Article  Google Scholar 

  25. Kim SM, Jeon H, Shin SH, Park SA, Jegal J, Hwang SY, Oh DX, Park J (2018) Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv Mater 30:1705145. https://doi.org/10.1002/adma.201705145

    Article  Google Scholar 

  26. Xu WM, Rong MZ, Zhang MQ (2016) Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J Mater Chem A 4:10683–10690

    Article  Google Scholar 

  27. Rekondo A, Martin R, Ruiz de Luzuriaga A, Cabañero G, Grande HJ, Odriozola I (2014) Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horiz 1:237–240

    Article  Google Scholar 

  28. Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368

    Article  Google Scholar 

  29. Vaiyapuri R, Greenland BW, Colquhoun HM, Elliott JM, Hayes W (2013) Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends—a route to property enhancement. Polym Chem-UK 4:4902–4909

    Article  Google Scholar 

  30. Zhou XX, Guo BC, Zhang LQ, Hu GH (2017) Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem Soc Rev 46:6301–6329

    Article  Google Scholar 

  31. Gao F, Cao JC, Wang QB, Liu R, Zhang SW, Liu JC, Liu XY (2017) Properties of UV-cured self-healing coatings prepared with PCDL-based polyurethane containing multiple H-bonds. Prog Org Coat 113:160–167

    Article  Google Scholar 

  32. Li ZD, Yao CH, Yu YH, Cai ZY, Wang XD (2014) Highly efficient capillary photoelectrochemical water splitting using cellulose nanofi ber- templated TiO2 photoanodes. Adv Mater 26:2262–2267

    Article  Google Scholar 

  33. Zhang SM, Cicoira F (2017) Water-enabled healing of conducting polymer films. Adv Mater 29:1703098. https://doi.org/10.1002/adma.201703098

    Article  Google Scholar 

  34. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  Google Scholar 

  35. Potier F, Guinault A, Delalande S, Sanchez C, Ribot F, Rozes L (2014) Nano-building block based-hybrid organic-inorganic copolymers with self-healing properties. Polym Chem-Uk 5:4474–4479

    Article  Google Scholar 

  36. Li GQ, Nettles D (2010) Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer 51:755–762

    Article  Google Scholar 

  37. Li GG, Uppu N (2010) Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. Compos Sci Technol 70:1419–1427

    Article  Google Scholar 

  38. El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55:2661–2668. https://doi.org/10.1021/acs.iecr.5b04315

    Article  Google Scholar 

  39. Su DW, Dou SX, Wang GX (2015) Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-Ion batteries. Chem Mater 27:6022–6029

    Article  Google Scholar 

  40. Fakin D, Kleinschek KS, Ojstrsek A (2015) The role of TiO2 nanoparticles on the UV protection ability and hydrophilicity of polyamide fabrics. Acta Phys Pol, A 127:943–946

    Article  Google Scholar 

  41. Zhang TT, Liu YP, Liang J, Wang DA (2017) Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl Surf Sci 394:440–445

    Article  Google Scholar 

  42. Nagai M, Huang J, Cui D, Wang ZL, Huang W (2017) Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid Polym Sci 295:1153–1164

    Article  Google Scholar 

  43. Feng XQ, Zhang GZ, Xu B, Jiang HY, Bai QM, Li HJ (2015) Self-healing elastomer assembly towards three-dimensional shape memory devices. Rsc Adv 5:70000–70004

    Article  Google Scholar 

  44. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mat Sol C 77:65–82

    Article  Google Scholar 

  45. Palomino-Vizcaino G, Resendiz DGV, Benitez-Hess ML, Martinez-Acuna N, Tapia-Vieyra JV, Bahena D, Diaz-Sanchez M, Garcia-Gonzalez OP, Alvarez-Sandoval BA, Alvarez-Salas LM (2018) Effect of HPV16 L1 virus-like particles on the aggregation of non-functionalized gold nanoparticles. Biosens Bioelectron 100:176–183

    Article  Google Scholar 

  46. Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648

    Article  Google Scholar 

  47. Hornat CC, Yang Y, Urban MW (2017) Quantitative predictions of shape-memory effects in polymers. Adv Mater 29:1603334. https://doi.org/10.1002/adma.201603334

    Article  Google Scholar 

  48. Watanabe R, Sako T, Korkiatithaweechai S, Yamaguchi M (2016) Autonomic healing of thermoplastic elastomer composed of triblock copolymer. J Mater Sci 52:1214–1220. https://doi.org/10.1007/s10853-016-0419-1

    Article  Google Scholar 

  49. Liu J, Liu J, Wang S, Huang J, Wu S, Tang Z, Guo B, Zhang L (2017) An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J Mater Chem A 5:25660–25671

    Article  Google Scholar 

  50. Das A, Sallat A, Bohme F, Suckow M, Basu D, Wiessner S, Stockelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Inter 7:20623–20630

    Article  Google Scholar 

  51. Cash JJ, Kubo T, Bapat AP, Sumerlin BS (2015) Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48:2098–2106

    Article  Google Scholar 

  52. Jiang ZC, Xiao YY, Kang Y, Li BJ, Zhang S (2017) Semi-IPNs with moisture-triggered shape memory and self-healing properties. Macromol Rapid Commun 38:1700149. https://doi.org/10.1002/marc.201700149

    Article  Google Scholar 

  53. Jang E, Sridharan K, Park YM, Park TJ (2016) Eliminated phototoxicity of TiO2 particles by an atomic-layer-deposited Al2O3 coating layer for UV-protection applications. Chem-Eur J 22:12022–12026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (21174017), the Beijing Municipal Natural Science Foundation of China (2102040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqi Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, S., Liu, Y., Zhou, L. et al. Enhanced dual-responsive shape memory nanocomposites with rapid and efficient self-healing capability. J Mater Sci 53, 13936–13948 (2018). https://doi.org/10.1007/s10853-018-2591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2591-y

Keywords

Navigation