Skip to main content
Log in

Mechanochemical synthesis of cerium(IV)-phosphonates

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The syntheses and crystal structures of two cerium(IV) phosphonates are presented. Cerium(IV) bis(phenylphosphonate) Ce(O3PC6H5)2 1 can be formed from precipitation and mechanochemical reaction, whereas cerium(IV) bis(carboxymethylphosphonate) monohydrate Ce(O3PCH2COOH)2 · H2O 2 is only accessible via ball milling. All reactions proceed very fast and are completed within a short time span. In situ measurements for the syntheses of 1 show that the product occurs within seconds or a few minutes, respectively. The structures were solved from powder X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen Z, Zhou Y, Weng L, Yuan C, Zhao D (2007) A zeolite-like zinc phosphonocarboxylate framework and its transformation into two- and three-dimensional structures. Chem Asian J 2:1549–1554

    Article  Google Scholar 

  2. Miller SR, Pearce GM, Wright PA, Bonino F, Chavan S, Bordiga S, Margiolaki I, Guillou N, Feerey G, Bourrelly S, Llewellyn PL (2008) Structural transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. J Am Chem Soc 130(47):15967–15981

    Article  Google Scholar 

  3. Dutta A, Patra AK, Bhaumik A (2012) Porous organic-inorganic hybrid nickel phosphonate: adsorption and catalytic applications. Microporous Mesoporous Mater 155:208–214

    Article  Google Scholar 

  4. Liu YP, Guo SX, Bond AM, Zhang J, Du SW (2013) Cobalt(II) phosphonate coordination polymers: synthesis, characterization and application as oxygen evolution electrocatalysts in aqueous media and water-saturated hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochim Acta 101:201–208

    Article  Google Scholar 

  5. Sen R, Saha D, Mal D, Brandao P, Rogez G, Lin Z (2013) Synthesis, structural aspects and catalytic performance of a tetrahedral cobalt phosphonate framework. Eur J Inorg Chem 28:5020–5026

    Google Scholar 

  6. Alberti G, Casciola M, Palombari R, Peraio A (1992) Protonic conductivity of layered zirconium phosphonates containing-SO3H groups. II. AC conductivity of zirconium alkyl sulfophenyl phosphonates in the range 100–200°C, in the presence or absence of water-vapor. Solid State Ionics 58(3–4):339–344

    Article  Google Scholar 

  7. Taylor JM, Mah RK, Moudrakovski IL, Ratcliffe CI, Vaidhyanathan R, Shimizu GKH (2010) Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J Am Chem Soc 132(40):14055–14057

    Article  Google Scholar 

  8. Thakkar R, Chudasama U (2010) Synthesis, characterization and proton transport properties of mixed metal phosphonate-zirconium titanium hydroxy ethylidene diphosphonate. J Iran Chem Soc 7(1):202–209

    Article  Google Scholar 

  9. Bazaga-Garcia M, Papadaki M, Colodrero RMP, Olivera-Pastor P, Losilla ER, Nieto-Ortega B, Aranda MAG, Choquesillo-Lazarte D, Cabeza A, Demadis KD (2015) Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem Mater 27(2):424–435

    Article  Google Scholar 

  10. Cai ZS, Bao SS, Wang XZ, Hu Z, Zheng LM (2016) Multiple-step humidity-induced single-crystal to single-crystal transformations of a cobalt phosphonate: structural and proton conductivity studies. Inorg Chem 55(7):3706–3712

    Article  Google Scholar 

  11. Demadis KD, Stavgianoudaki N (2012) Chapter 14 structural diversity in metal phosphonate frameworks: impact on applications. In: Metal phosphonate chemistry: from synthesis to applications. The Royal Society of Chemistry, pp 438–492

  12. Goura J, Chandrasekhar V (2015) Molecular metal phosphonates. Chem Rev 115(14):6854–6965

    Article  Google Scholar 

  13. Zheng Y-Z, Zhou G-J, Zheng Z, Winpenny REP (2014) Molecule-based magnetic coolers. Chem Soc Rev 43(5):1462–1475

    Article  Google Scholar 

  14. Ma KR, Kan YH, Wang XL, Cao L (2016) Three metal(II) diphosphonates with d(10) electron configuration: structural, fluorescent and electrochemical studies. J Cluster Sci 27(1):213–226

    Article  Google Scholar 

  15. Zhu Y-P, Ma T-Y, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1(5):360–383

    Article  Google Scholar 

  16. Bauer S, Bein T, Stock N (2005) High-throughput investigation and characterization of cobalt carboxy phosphonates. Inorg Chem 44(16):5882–5889

    Article  Google Scholar 

  17. Bauer S, Stock N (2007) Implementation of a temperature-gradient reactor system for high-throughput investigation of phosphonate-based inorganic-organic hybrid compounds. Angew Chem Int Ed 46(36):6857–6860

    Article  Google Scholar 

  18. Schilling LH, Stock N (2014) High-throughput ultrasonic synthesis and in situ crystallisation investigation of metal phosphonocarboxylates. Dalton Trans 43(2):414–422

    Article  Google Scholar 

  19. Wilke M, Bach S, Gorelik Tatiana E, Kolb U, Tremel W, Emmerling F (2017) Divalent in situ characterization and structure solution. Zeitschrift für Kristallographie Cryst Mater 232(1–3):209–222

    Google Scholar 

  20. Batzdorf L, Fischer F, Wilke M, Wenzel KJ, Emmerling F (2015) Direct in situ investigation of milling reactions using combined X-ray diffraction and raman spectroscopy. Angew Chem Int Ed 54(6):1799–1802

    Article  Google Scholar 

  21. Wilke M, Batzdorf L, Fischer F, Rademann K, Emmerling F (2016) Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. Rsc Adv 6(42):36011–36019

    Article  Google Scholar 

  22. Wilke M, Buzanich AG, Reinholz U, Rademann K, Emmerling F (2016) The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates. Dalton Trans 45(23):9460–9467

    Article  Google Scholar 

  23. Halasz I, Puskaric A, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Dinnebier RE, Patel B, Jones W, Strukil V, Friščić T (2013) Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew Chem Int Ed 52(44):11538–11541

    Article  Google Scholar 

  24. Halasz I, Puskaric A, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Dinnebier RE, Patel B, Jones W, Strukil V, Friščić T (2013) Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew Chem 125(45):11752–11755

    Article  Google Scholar 

  25. Halasz I, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Nightingale RC, Dinnebier RE, Friščić T (2013) In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat Protoc 8:1718–1729

    Article  Google Scholar 

  26. Gracin D, Strukil V, Friščić T, Halasz I, Uzarevic K (2014) Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew Chem Int Ed 53(24):6193–6197

    Article  Google Scholar 

  27. Gracin D, Strukil V, Friščić T, Halasz I, Uzarevic K (2014) Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew Chem 126(24):6307–6311

    Article  Google Scholar 

  28. Alberti G, Costantino U, Allulli S, Tomassini N (1978) Crystalline ZR(R-PO3)2 and ZR(R-OPO3)2 compounds (R = organic radical): a new class of materials having layered structure of the zirconium-phosphate type. J Inorg Nucl Chem 40(6):1113–1117

    Article  Google Scholar 

  29. Clearfield A (1996) Recent advances in metal phosphonate chemistry. Curr Opin Solid State Mater Sci 1(2):268–278

    Article  Google Scholar 

  30. Clearfield A (2008) Unconventional metal organic frameworks: porous cross-linked phosphonates. Dalton Trans 44:6089–6102

    Article  Google Scholar 

  31. Pica M, Donnadio A, D’Amato R, Capitani D, Taddei M, Casciola M (2014) Layered metal(IV) phosphonates with rigid pendant groups: new synthetic approaches to nanosized zirconium phosphate phenylphosphonates. Inorg Chem 53(4):2222–2229

    Article  Google Scholar 

  32. Juan DW, Good JJ, DiStefano VH, Albrecht-Schmitt TE (2011) Self-assembly of hexanuclear clusters of 4f and 5f elements with cation specificity. Eur J Inorg Chem 9:1374–1377

    Google Scholar 

  33. Diwu JA, Wang SA, Liao ZL, Burns PC, Albrecht-Schmitt TE (2010) Cerium(IV), neptunium(IV), and plutonium(IV) 1,2-phenylenediphosphonates: correlations and differences between early transuranium elements and their proposed surrogates. Inorg Chem 49(21):10074–10080

    Article  Google Scholar 

  34. Costantino F, Gentili PL, Audebrand N (2009) A new dual luminescent pillared cerium(IV)sulfate-diphosphonate. Inorg Chem Commun 12(5):406–408

    Article  Google Scholar 

  35. Costantino F, Ienco A, Gentili PL, Presciutti F (2010) Synthesis, X-ray powder structure, and photophysical properties of three new ce(III) sulfate-diaminotetraphosphonate-based coordination polymers. Cryst Growth Des 10(11):4831–4838

    Article  Google Scholar 

  36. David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915

    Article  Google Scholar 

  37. Paris O, Li CH, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II. J Appl Crystallogr 40:S466–S470

    Article  Google Scholar 

  38. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14(4–6):235–248

    Article  Google Scholar 

  39. Wilke M, Kabelitz A, Gorelik TE, Buzanich AG, Reinholz U, Kolb U, Rademann K, Emmerling F (2016) The crystallisation of copper(ii) phenylphosphonates. Dalton Trans 45(43):17453–17463

    Article  Google Scholar 

  40. Langford JI, Louer D (1996) Powder diffraction. Rep Prog Phys 59:131–234

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding received from the DFG program “Crystalline non-equilibrium compounds” (Grant No. Em198/3-2). Manuel Wilke has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 701647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Emmerling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilke, M., Akhmetova, I., Rademann, K. et al. Mechanochemical synthesis of cerium(IV)-phosphonates. J Mater Sci 53, 13733–13741 (2018). https://doi.org/10.1007/s10853-018-2507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2507-x

Keywords

Navigation