Skip to main content
Log in

Core–shell porphyrin·multi-walled carbon nanotube hybrids linked by multiple hydrogen bonds: nanostructure and electronic communication

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, multiple hydrogen bonding interaction of ureidopyrimidinone (UPM) was employed as the linking bridge for the formation of a novel porphyrin·multi-walled carbon nanotube (MWNT) hybrid, which was then used to fabricate a layer-by-layer (LbL) film composed of porphyrin-UPM·MWNT-UPM. Both in the assembled hybrid and the LbL film, porphyrin was closely attached to the surface of the MWNT under the strong multiple hydrogen bonding interaction, forming the core–shell structure. In addition, strong electronic communication was observed between porphyrin and MWNT. The hydrogen bonding association behavior between porphyrin-UPM and MWNT-UPM was attentively analyzed by UV–Vis spectra, fluorescent spectra and transmission electron microscope experiments. It was found that the hydrogen bonding interactions were crucial for the formation of the supramolecular hybrid and the LbL film as well as the occurrence of interfacial electronic communication. This result indicated that the introduction of strong noncovalent bonding interaction between donor and acceptor is an appropriate way to control the material structure and facilitate the interfacial electronic communication in the hybrids which lay the groundwork for their application in electrochemical sensors or photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    Article  Google Scholar 

  3. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronic. Nanoscale 5:1727–1752

    Article  Google Scholar 

  4. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668

    Article  Google Scholar 

  5. Zegkinoglou I, Ragoussi M-E, Pemmaraju CD, Johnson PS, Pickup DF, Ortega JE, Prendergast D, de la Torre G, Himpsel FJ (2013) Spectroscopy of donor–π–acceptor porphyrins for dye-sensitized solar cells. J Phys Chem C 117:13357–13364

    Article  Google Scholar 

  6. Zhang W, Lai W, Cao R (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin-and corrole-based systems. Chem Rev 117:3717–3797

    Article  Google Scholar 

  7. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  Google Scholar 

  8. Orellana W, Julián DC (2015) Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J Mater Sci 50:898–905. https://doi.org/10.1007/s10853-014-8650-0

    Article  Google Scholar 

  9. Chen J, Collier CP (2005) Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B 109:7605–7609

    Article  Google Scholar 

  10. Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S (2014) Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc 136:6348–6354

    Article  Google Scholar 

  11. Sohrabi S, Dehghanpour S, Ghalkhani MA (2018) A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J Mater Sci 53:3624–3639. https://doi.org/10.1007/s10853-017-1768-0

    Article  Google Scholar 

  12. Zhang M, Fu L, Ye J, Humphrey MG, Liu H, Yan B, Zhang L, Shao J, Zhang C (2017) Covalent-linked porphyrin/single-walled carbon nanotube nanohybrids: synthesis and influence of porphyrin substituents on nonlinear optical performance. Carbon 124:618–629

    Article  Google Scholar 

  13. Zhang H, Bork MA, Riedy KJ, McMillin DR, Choi JH (2014) Understanding photophysical interactions of semiconducting carbon nanotubes with porphyrin chromophores. J Phys Chem C 118:11612–11619

    Article  Google Scholar 

  14. Sonkar PK, Prakash K, Yadav M, Ganesan V, Sankar M, Gupta R, Yadav DK (2017) Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J Mater Chem A 5:6263–6276

    Article  Google Scholar 

  15. Wang C, Yuan R, Chai Y, Chen S, Zhang Y, Hu F, Zhang M (2012) Non-covalent iron (III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Electrochim Acta 62:109–115

    Article  Google Scholar 

  16. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  17. Baskaran D, Mays JW, Zhang XP, Bratcher MS (2005) Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J Am Chem Soc 127:6916–6917

    Article  Google Scholar 

  18. Li H, Martin RB, Harruff BA, Carino RA, Allard LF, Sun Y-P (2004) Single-walled carbon nanotubes tethered with porphyrins: synthesis and photophysical properties. Adv Mater 16:896–900

    Article  Google Scholar 

  19. Satake A, Miyajima Y, Kobuke Y (2005) Porphyrin-carbon nanotube composites formed by noncovalent polymer wrapping. Chem Mater 17:716–724

    Article  Google Scholar 

  20. Ehli C, Rahman GA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231

    Article  Google Scholar 

  21. Delport G, Vialla F, Roquelet C, Campidelli S, Voisin C, Lauret JS (2017) Davydov splitting and self-organization in a porphyrin layer noncovalently attached to single wall carbon nanotubes. Nano Lett 17:6778–6782

    Article  Google Scholar 

  22. Zhao J, Park H, Han J, Lu JP (2004) Electronic properties of carbon nanotubes with covalent sidewall functionalization. J Phys Chem B 108:4227–4230

    Article  Google Scholar 

  23. Park H, Zhao J, Lu JP (2006) Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett 6:916–919

    Article  Google Scholar 

  24. Milowska KZ (2015) Influence of carboxylation on structural and mechanical properties of carbon nanotubes: composite reinforcement and toxicity reduction perspectives. J Phys Chem C 119:26734–26746

    Article  Google Scholar 

  25. Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun 1:5–16

    Article  Google Scholar 

  26. Armstrong G, Buggy M (2005) Hydrogen-bonded supramolecular polymers: a literature review. J Mater Sci 40:547–559. https://doi.org/10.1007/s10853-005-6288-7

    Article  Google Scholar 

  27. Sessler JL, Jayawickramarajah J, Gouloumis A, Torres T, Guldi DM, Maldonado S, Stevenson KJ (2005) Synthesis and photophysics of a porphyrin–fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 14:1892–1894

    Article  Google Scholar 

  28. Sánchez L, Sierra M, Martín N, Myles AJ, Dale TJ, Rebek J, Seitz W, Guldi DM (2006) Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. Angew Chem 118:4753–4757

    Article  Google Scholar 

  29. Calderon RMK, Valero J, Grimm B, de Mendoza J, Guldi DM (2014) Enhancing molecular recognition in electron donor–acceptor hybrids via cooperativity. J Am Chem Soc 136:11436–11443

    Article  Google Scholar 

  30. McClenaghan ND, Grote Z, Darriet K, Zimine M, Williams RM, De Cola L, Bassani DM (2005) Supramolecular control of oligothienylenevinylene–fullerene interactions: evidence for a ground-state EDA complex. Org Lett 7:807–810

    Article  Google Scholar 

  31. Canzi G, Goeltz JC, Henderson JS, Park RE, Maruggi C, Kubiak CP (2014) On the observation of intervalence charge transfer bands in hydrogen-bonded mixed-valence complexes. J Am Chem Soc 136:1710–1713

    Article  Google Scholar 

  32. Wang S-M, Yu M-L, Feng K, Li X-B, Chen Y-Z, Chen B, Tung C-H, Wu L-Z (2018) Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4 [1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. J Photochem Photobiol A 355:457–466

    Article  Google Scholar 

  33. Quintana M, Traboulsi H, Llanes-Pallas A, Marega R, Bonifazi D, Prato M (2012) Multiple hydrogen bond interactions in the processing of functionalized multi-walled carbon nanotubes. ACS Nano 6:23–31

    Article  Google Scholar 

  34. Rodríguez-Pérez L, Vela S, Atienza C, Martín N (2017) Supramolecular electronic interactions in porphyrin-SWCNT hybrids through amidinium–carboxylate connectivity. Org Lett 19:4810–4813

    Article  Google Scholar 

  35. Decher G, Hong J-D (1991) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol Symp 46:321–327

    Article  Google Scholar 

  36. Zhang X, Chen H, Zhang H (2007) Layer-by-layer assembly: from conventional to unconventional methods. Chem Commun 14:1395–1405

    Article  Google Scholar 

  37. De Girolamo J, Reiss P, Pron A (2008) Hybrid materials from diaminopyriminide-functionalized poly(hexylthiophene) and thymine-capped CdSe nanocrystals: part II hydrogen bond assisted layer-by-layer molecular level processing. J Phys Chem C 112:8797–8801

    Article  Google Scholar 

  38. Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW (1998) Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J Am Chem Soc 120:6761–6769

    Article  Google Scholar 

  39. Yu M-L, Wang S-M, Feng K, Khoury T, Crossley MJ, Fan Y, Zhang J-P, Tung C-H, Wu L-Z (2011) Photoinduced electron transfer and charge-recombination in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded porphyrin–fullerene assemblies. J Phys Chem C 115:23634–23641

    Article  Google Scholar 

  40. Pochorovski I, Wang H, Feldblyum JI, Zhang X, Antaris AL, Bao Z (2015) H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes. J Am Chem Soc 137:4328–4331

    Article  Google Scholar 

  41. Han J, Shen Y, Feng W (2016) Using multiple hydrogen bonding cross-linkers to access reversibly responsive three dimensional graphene oxide architecture. Nanoscale 8:14139–14145

    Article  Google Scholar 

  42. Wang S, Guo H, Wang X, Wang Q, Li J, Wang X (2014) Self-assembled multiwalled carbon nanotube films assisted by ureidopyrimidinone-based multiple hydrogen bonds. Langmuir 30:12923–12931

    Article  Google Scholar 

  43. Wang Q, Wang S, Shang J, Qiu S, Zhang W, Wu X, Li J, Chen W, Wang X (2017) Enhanced electronic communication and electrochemical sensitivity benefiting from the cooperation of quadruple hydrogen bonding and π–π Interactions in graphene/multi-walled carbon nanotube hybrids. ACS Appl Mater Interfaces 9:6255–6264

    Article  Google Scholar 

  44. Wang S, Yang L, Wang Q, Fan Y, Shang J, Qiu S, Li J, Zhang W, Wu X (2018) Supramolecular self-assembly of layer-by-layer graphene film driven by the synergism of π–π and hydrogen bonding interaction. J Photochem Photobiol A 355:255–269

    Google Scholar 

  45. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater 12:874–878

    Article  Google Scholar 

  46. Bettelheim A, White BA, Raybuck SA, Murray RW (1987) Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins. Inorg Chem 26:1009–1017

    Article  Google Scholar 

  47. Guo H, Karplus M (1994) Solvent influence on the stability of the peptide hydrogen bond: a supramolecular cooperative effect. J Phys Chem 98:7104–7105

    Article  Google Scholar 

  48. Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc 133:5182–5185

    Article  Google Scholar 

  49. Chinta JP, Waiskopf N, Lubin G, Rand D, Hanein Y, Banin U, Yitzchaik S (2017) Carbon nanotube and semiconductor nanorods hybrids: preparation, characterization, and evaluation of photocurrent generation. Langmuir 33:5519–5526

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21772152, 21103133); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry; and the Natural Science Foundation of Shaanxi Province (No. 2015JM5224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiguan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Fan, Y., Wang, Q. et al. Core–shell porphyrin·multi-walled carbon nanotube hybrids linked by multiple hydrogen bonds: nanostructure and electronic communication. J Mater Sci 53, 10835–10845 (2018). https://doi.org/10.1007/s10853-018-2379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2379-0

Keywords

Navigation