Skip to main content
Log in

Effects of Li addition on the corrosion behaviour and biocompatibility of Mg(Li)–Zn–Ca metallic glasses

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium alloys with suitable corrosion behaviour and good mechanical properties are desired for biodegradable materials. In the current study, novel Mg–Li-based metallic glasses (MGs) demonstrate potential clinical applications as implantable biodegradable materials. The amorphous structure of MGs provides suitable elastic modulus with human bone. The enhanced corrosion resistance of MGs realises a uniform corrosion process, as well as maintains a stable acid-based environment, and increases cell proliferation. A schematic model is proposed to illustrate the corrosion mechanisms of MGs. Adding Li significantly improves the corrosion resistance of MGs. Both the indirect cytotoxicity and direct cell culture assays are conducted using transfected osteoblasts (hFOB) cells. Results show that the novel Mg–Li–Zn–Ca MGs have good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Chang DY, Jie Y, Sang KW et al (2014) The effects of microstructural factors on the corrosion behaviour of Mg–5Sn–xZn (x = 1, 3 wt%) extrusions. Corros Sci 90(16):597–605

    Google Scholar 

  2. Ha HY, Kang JY, Chang DY et al (2014) Role of hydrogen evolution rate in determining the corrosion rate of extruded Mg–5Sn–(1–4 wt%)Zn alloys. Corros Sci 89:275–285

    Article  Google Scholar 

  3. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng Rep 77(2):1–34

    Article  Google Scholar 

  4. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  Google Scholar 

  5. Lin X, Tan L, Wang Q et al (2013) In vivo, degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater Sci Eng C 33(7):3881–3888

    Article  Google Scholar 

  6. Xue-Nan GU, Zheng YF (2010) A review on magnesium alloys as biodegradable materials. Chin Inst High Learn Acad Abstr Mater Sci 4(2):111–115

    Google Scholar 

  7. Sigel H (1973) Metal ions in biological systems, vol 2. Dekker, pp 124–126

  8. Kannan MB, Raman RK (2008) In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.[J]. Biomaterials 29(15):2306–2314

    Article  Google Scholar 

  9. Zhang S, Zhang X, Zhao C et al (2010) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 6(2):626–640

    Article  Google Scholar 

  10. Wan Y, Xiong G, Luo H et al (2008) Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater Des 29(10):2034–2037

    Article  Google Scholar 

  11. Sun Y, Kong MX, Jiao XH (2011) In-vitro evaluation of Mg–4.0Zn–0.2Ca alloy for biomedical application. Transact Nonferrous Metals Soc China 21(31):s252–s257

    Article  Google Scholar 

  12. Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T (2016) Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C 58(1):24–35

    Article  Google Scholar 

  13. Song G, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1(1):11–33

    Article  Google Scholar 

  14. Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone [J]. Biomaterials 29:1329–1344

    Article  Google Scholar 

  15. Song GL (2007) Control of biodegradation of biocompatible magnesium alloys. Corros Sci 49:1696–1701

    Article  Google Scholar 

  16. Mao L, Yuan GY, Niu JL, Zong Y, Ding WJ (2013) In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment. Mater Sci Eng C 33:242–250

    Article  Google Scholar 

  17. Zhang E, Yang L, Xu J et al (2010) Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater 6(5):1756–1762

    Article  Google Scholar 

  18. Scully JR, Gebert A, Payer JH (2007) Corrosion and related mechanical properties of bulk metallic glasses. J Mater Res 22:302–313

    Article  Google Scholar 

  19. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44(2–3):45–89

    Google Scholar 

  20. Gebert A, Wolff U, John A, Eckert J, Schultz L (2001) Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes. Mater Sci Eng A 299:125–135

    Article  Google Scholar 

  21. Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8:887–891

    Article  Google Scholar 

  22. Li H, Pang S, Liu Y et al (2015) Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater Des 67:9–19

    Article  Google Scholar 

  23. Haferkamp H, Jaschik C, Juchmann P et al (2001) Entwicklung und Eigenschaften von Magnesium–Lithium–Legierungen. Material wissen schaft Und Werkstofftechnik 32(1):25–30

    Article  Google Scholar 

  24. Zeng RC, Sun L, Zheng YF et al (2014) Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros Sci 79(79):69–82

    Article  Google Scholar 

  25. Witte F, Fischer J, Nellesen J et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials 27(7):1013–1018

    Article  Google Scholar 

  26. Fischer J, Feyerabend F, Hort N, Kainer KU, Schreyer A, Willumeit R (2009) Cytotoxic and immunological effects of magnesium alloy elements on cells. In: Kainer KU (ed) Proceeding of 8th international conference on magnesium alloys and their applications. Wiley-VCH, DGM, Weinheim, pp 1175–1181

  27. Sahoo B, Kuncser V, Keune W, Pieper J (2005) Mössbauer spectroscopical investigation of amorphous Fe–Y alloy ribbons prepared by melt spinning. Hyperfine Interact 165:175–181

    Article  Google Scholar 

  28. Schuh CA, Nieh TG (2003) A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater 51(1):87–99

    Article  Google Scholar 

  29. Chinh NQ, Horváth G, Kovács Z et al (2005) Kinematic and dynamic characterization of plastic instabilities occurring in nano- and microindentation tests. Mater Sci Eng A 409(1–2):100–107

    Article  Google Scholar 

  30. Zhang YJ, Yan CW, Wang FH, Li WF (2005) Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros Sci 47:2816–2831

    Article  Google Scholar 

  31. Morlidge JR, Skeldon P, Thompson GE, Habazaki H, Shimizu K, Wood GC (1999) Gel formation and the efficiency of anodic film growth on aluminium. Electrochim Acta 44:2423–2435

    Article  Google Scholar 

  32. Song GL (2009) Effect of tin modification on corrosion of AM70 magnesium alloy. Corros Sci 51:2063–2070

    Article  Google Scholar 

  33. Tan ALK, Soutar AM, Annergren IF, Liu YN (2005) Multilayer sol-gel coating for corrosion protection of magnesium. Surf Coat Technol 198:478–482

    Article  Google Scholar 

  34. Brett CMA, Dias L, Trindabe B, Fischer R, Mies S (2006) Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying [J]. Electrochim Acta 51:1752–1760

    Article  Google Scholar 

  35. Gu X, Zheng Y (2010) Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31(6):1093–1103

    Article  Google Scholar 

  36. Zeng R, Guo X, Liu C et al (2011) Study on corrosion of medical Mg–Ca And Mg–Li–Ca alloys. Acta Metall Sin Chin Edit 47(11):1477–1482

    Google Scholar 

  37. Bialobrzeski A, Saja K, Zmudzińska M (2011) Studies of corrosion behaviour in alkaline environment of binary Mg–Li alloys for plastic forming. Arch Foundry Eng 11(SI 3):21–24

    Google Scholar 

  38. Zeng R, Kainer KU, Blawert C et al (2011) Corrosion of an extruded magnesium alloy ZK60 component—the role of microstructural features. J Alloy Compd 509(13):4462–4469

    Article  Google Scholar 

  39. News STB (2007) CRC handbook of chemistry and physics, a ready-reference book of chemical and physical data, 88th edn. Scitech Book News, Portland

    Google Scholar 

  40. Nordlien JH, Ono S, Masuko N et al (1997) A TEM investigation of naturally formed oxide films on pure magnesium. Corros Sci 39(8):1397–1414

    Article  Google Scholar 

  41. Meyer-Lindenberg A, Windhagen H, Witte F, et al (2004) medical implant for the human or animal body: US, US 2004 0241036 A1[P]

  42. Song Y, Shan D, Chen R et al (2009) Investigation of surface oxide film on magnesium lithium alloy. J Alloy Compd 484(1):585–590

    Article  Google Scholar 

  43. Liu JX, Zhu YX, Gao F (2011) Chemistry of Nonorganic Elements, 2nd edn. Science Press, Beijing (in Chinese)

    Google Scholar 

  44. Kokubo T (1996) Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta S280–S281(95):479–490

    Article  Google Scholar 

  45. Ramya M, Sarwat SG, Udhayabanu V, Subramanian S, Raj B, Ravi KR (2015) Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater Des 86:829–835

    Article  Google Scholar 

  46. Wang Jingfeng, Huang Song, Li Yang, Wei Yiyun, Xi Xingfeng, Cai Kaiyong (2013) Effects of Y on the Microstructure, microstructure, mechanical and bio-corrosion properties of Mn-doped Mg–Zn–Ca bulk metallic glass composites. Mater Sci Eng C 33(7):3832–3838

    Article  Google Scholar 

  47. Wu Y, He G, Zhang Y et al (2016) Unique antitumor property of the Mg–Ca–Sr alloys with addition of Zn. Sci Rep 6:21736–21748

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation, China (Grant Nos. 51771120 and 51304136), project supported by Shanghai Key Technology Support Program (Shanghai Science and Technology Ministry China. Grant No. 16060502400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Deng or Liu Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meifeng, H., Hao, W., Kunguang, Z. et al. Effects of Li addition on the corrosion behaviour and biocompatibility of Mg(Li)–Zn–Ca metallic glasses. J Mater Sci 53, 9928–9942 (2018). https://doi.org/10.1007/s10853-018-2323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2323-3

Keywords

Navigation