Skip to main content

Advertisement

Log in

Planar impacts on nanocrystalline SiC: a comparison of different potentials

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon carbide ceramics under shock loading is an important aspect in studying their physical and mechanical properties. Molecular dynamics simulations have been carried out using Tersoff-1989, Tersoff-1994, Tersoff-2005 and Vashishta potentials, respectively. The Hugoniot states including compression stress, shear stress, temperature and shock wave velocity are calculated, as well as shock-induced plasticity and the shock wave fronts. A comprehensive comparison among different potentials, as well as comparison to current available experiments, has been made. Tersoff-1989, Tersoff-1994 and Tersoff-2005 potentials are easily to overestimate the shock stress, shear stress and temperature, as well as shock wave velocity, while Vashishta potential shows excellent agreement with experimental data. The Hugoniot elastic limit is ~ 14.5 GPa and the maximum shear stress is ~ 6 GPa using Vashishta potential which are in good agreement with experiments, while Tersoff-like potentials yield much higher values. Due to differences in radial distribution function among these potentials, Vashishta potential is prone to produce plasticity and structural phase transformation basing on the statistics of the coordination numbers of atoms. Besides, the shock wave fronts show little difference among these potentials under elastic shock compression at low particle velocity. However, when it comes to high shock intensity resulting in plasticity or phase transition, the Tersoff-1989 and Tersoff-1994 produce the widest shock wave fronts, followed by Tersoff-2005, while Vashishta potential has the narrowest wave front. By comprehensive comparisons, the Vashishta potential is demonstrated to be the most suitable one to describe the silicon carbides ceramics under shock loadings. Our work provides useful information to select a suitable potential to study the shock response of silicon carbides ceramics using molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hsu SM, Shen M (2004) Wear prediction of ceramics. Wear 256:867

    CAS  Google Scholar 

  2. Weitzel CE, Palmour JW, Carter CH, Moore K, Nordquist KJ, Allen S, Thero C, Bhatnagar M (1996) Silicon carbide high-power devices. IEEE Trans Electron Devices 43:10

    Google Scholar 

  3. Gooh WA (2001) In: McCauley JW et al (eds) Ceramic armor materials. The American Ceramic Society, Weaterivlle, pp 3–21

    Google Scholar 

  4. Hogg PJ (2006) Composites in armor. Science 314:1100

    CAS  Google Scholar 

  5. Drolshagen G (2008) Impact effects from small size meteoroids and space debris. Adv Space Res 41:1123–1131

    Google Scholar 

  6. Mcbride N, McDonnell JAM (1999) Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet Space Sci 47:1005–1013

    Google Scholar 

  7. Christiansen EL, Hyde JL, Bernhard RP (2004) Space shuttle debris and meteoroid impacts. Adv Space Res 34:1097–1103

    Google Scholar 

  8. Feng R, Raiser GF, Gupta YM (1996) Shock response of polycrystalline silicon carbide undergoing inelastic deformation. J Appl Phys 79(3):1378–1387

    CAS  Google Scholar 

  9. Feng R, Raiser GF, Gupta YM (1998) Material strength and inelastic deformation of silicon carbide under shock wave compression. J Appl Phys 83(1):79–86

    CAS  Google Scholar 

  10. Yuan G, Feng R, Gupta YM (2001) Compression and shear wave measurements to characterize the shocked state in silicon carbide. J Appl Phys 89(10):5372–5380

    CAS  Google Scholar 

  11. Grady DE (1998) Shock-wave compression of brittle solids. Mech Mater 29:181–203

    Google Scholar 

  12. Shih CJ, Meyers MA, Nesterenko VF (1998) High-strain-rate deformation of granular silicon carbide. Acta Mater 46(11):4037–4065

    CAS  Google Scholar 

  13. Sarva S, Nemat-Nasser S (2001) Dynamic compressive strength of silicon carbide under uniaxial compression. Mater Sci Eng A 317:140–144

    Google Scholar 

  14. Wang H, Ramesh KT (2004) Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater 52(2):355–367

    CAS  Google Scholar 

  15. Vogler TJ, Reinhart WD, Chhabildas LC, Dandekar DP (2006) Hugoniot and strength behavior of silicon carbide. J Appl Phys 99(2):023512

    Google Scholar 

  16. Millett JCF, Bourne NK, Dandekar DP (2005) Delayed failure in a shock-loaded silicon carbide. J Appl Phys 97(11):113513

    Google Scholar 

  17. Paris V, Frage N, Dariel MP, Zaretsky E (2010) The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering. Int J Impact Eng 37(11):1092–1099

    Google Scholar 

  18. Anderson CE, Behner T, Holmquist TJ, Orphal DL (2011) Penetration response of silicon carbide as a function of impact velocity. Int J Impact Eng 38(11):892–899

    Google Scholar 

  19. Zhu HY, Ma YZ, Yang HB, Selvi E, Hou DB, Ji C (2008) Synthesis and compression of nanocrystalline silicon carbide. J Appl Phys 104(12):123516

    Google Scholar 

  20. Zou JH, Ye ZQ, Cao BY (2016) Phonon thermal properties of graphene from molecular dynamics using different potentials. J Chem Phys 145(13):134705

    Google Scholar 

  21. de Tomas C, Suarez-Martinez I, Marks NA (2016) Graphitization of amorphous carbons: a comparative study of interatomic potentials. Carbon 109:681–693

    Google Scholar 

  22. Dziedzic J, Winczewski S, Rybicki J (2016) Structure and properties of liquid Al–Cu alloys: empirical potentials compared. Comput Mater Sci 114:219–232

    CAS  Google Scholar 

  23. Hao JN, Shu XL, Jin S, Zhang XS, Zhang Y, Lu GH (2017) A comparison of interatomic potentials for modeling tungsten nanocluster structures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:180–185

    CAS  Google Scholar 

  24. Kanski M, Maciazek D, Golumski M, Postawa Z (2017) Sputtering of octatetraene by 15 keV C60 projectiles: comparison of reactive interatomic potentials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 393:29–33

    CAS  Google Scholar 

  25. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566

    CAS  Google Scholar 

  26. Tersoff J (1990) Carbon defects and defect reactions in silicon. Phys Rev Lett 64(15):1757

    CAS  Google Scholar 

  27. Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349

    CAS  Google Scholar 

  28. Makeev Maxim A, Srivastava Deepak (2006) Silicon carbide nanowires under external loads: an atomistic simulation study. Phys Rev B 74:165303

    Google Scholar 

  29. Makeev Maxim A, Sundaresh Suman, Srivastava Deepak (2009) Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites. J Appl Phys 106:014311

    Google Scholar 

  30. Bringuier S, Manga VR, Runge K, Deymier P, Muralidharan K (2015) Grain boundary dynamics of SiC bicrystals under shear deformation. Mater Sci Eng, A 634:161–166

    CAS  Google Scholar 

  31. Lee WH, Yao XH, Jian WR, Han Q (2015) High-velocity shock compression of SiC via molecular dynamics simulation. Comput Mater Sci 98:297–303

    CAS  Google Scholar 

  32. Devanathan R, Diaz de la Rubia T, Weber WJ (1998) J Nucl Mater 253:47

    CAS  Google Scholar 

  33. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211

    Google Scholar 

  34. Vashishta P et al (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101(10):103515

    Google Scholar 

  35. Tsuzuki H, Rino JP, Branicio PS (2011) Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J Phys D Appl Phys 44:055405 (8pp)

    Google Scholar 

  36. Branicio PS, Kalia RK, Nakano A, Vashishta P (2010) Nanoductility induced brittle fracture in shocked high performance ceramics. Appl Phys Lett 97:111903

    Google Scholar 

  37. Zhang J, Branicio PS (2014) Molecular dynamics simulations of plane shock loading in SiC. Procedia Eng 75:150–153

    CAS  Google Scholar 

  38. Li WH, Yao XH (2016) The spall of single crystal SiC: the effects of shock pulse duration. Computat Mater Sci 124:151–159

    CAS  Google Scholar 

  39. Li WH, Yao XH, Branicio PS (2017) X, Q, Zhang and N. B. Zhang, Shock-induced spall in single and nanocrystalline SiC. Acta Mater 140:274–289

    CAS  Google Scholar 

  40. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. http://lammps.sandia.gov/

  41. Weisstein EW Voronoi diagram. from MathWorld–a wolfram web resource. http://mathworld.wolfram.com/VoronoiDiagram.html

  42. Marsh SP (1980) LSAL shock hugoniot data. University of California Press, Berkeley

    Google Scholar 

  43. Yosida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:10587

    Google Scholar 

  44. Shimojo F, Ebbsjo I, Kalia RK, Nakano A, Rino JP, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:15

    Google Scholar 

Download references

Acknowledgements

This study was funded by Natural Science Foundation of China (Grant Numbers: 11372113, 11472110 and 11672110), Guangdong Provincial Education Department, innovation and strong school funding (Grant Number: 2014ktscx015) and the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (Grant Number: KFJJ15-20M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yao, X. & Zhang, X. Planar impacts on nanocrystalline SiC: a comparison of different potentials. J Mater Sci 53, 6637–6651 (2018). https://doi.org/10.1007/s10853-018-1985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-1985-1

Navigation