Skip to main content

Advertisement

Log in

Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fields of biomaterials and bone tissue engineering continue to grow, due in part to new advances in materials science but also to the increasingly broad understanding of how the human body responds to implanted materials. For a long time the goal of the biomaterials scientist was to develop materials that supported healing and were biocompatible, but over time a better understanding of how the body responds to implanted materials has been achieved. The concept of mechanotransduction, which involves mechanical forces applied to the cell, the conversion of those forces into a biochemical signal, the transmission of signals to cells, and the resulting cell response, has blossomed over the past 20 years or so. Here we review how cells, specifically those of the skeletal system, respond to different types of physical forces, how these responses manifest themselves as changes and adaptations within the skeletal system, and how investigators go about evaluating these responses in the laboratory. We also review how these approaches and lessons learned inform the development of novel strategies for bone tissue engineering, toward healing bone defects with biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) An introduction to materials in medicine, biomaterials science. Academic Press, San Diego

    Google Scholar 

  2. Paluch EK, Nelson CM, Biais N, Fabry B, Moeller J, Pruitt BL, Wollnik C, Kudryasheva G, Rehfeldt F, Federle W (2015) Mechanotransduction: use the force(s). BMC Biol 13:47

    Article  Google Scholar 

  3. Kwon SH, Li L, He Y, Tey JCS, Li H, Zhuplatov I, Kim SJ, Terry CM, Blumenthal DK, Shiu YT, Cheung AK (2015) Prevention of venous neointimal hyperplasia by a multitarget receptor tyrosine kinase inhibitor. J Vasc Res 52:244–256

    Article  Google Scholar 

  4. Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  Google Scholar 

  5. Meakin LB, Price JS, Lanyon LE (2014) The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone. Front Endocrinol (Lausanne) 5:154

    Google Scholar 

  6. Prichard HL, Manson RJ, DiBernardo L, Niklason LE, Lawson JH, Dahl SL (2011) An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 4:674–682

    Article  Google Scholar 

  7. Sayyidmousavi A, Bougherara H (2012) Investigation of stress shielding around the Stryker Omnifit and Exeter periprosthetic hip implants using an irreversible thermodynamic-based model. J Biomed Mater Res B Appl Biomater 100:1416–1424

    Article  Google Scholar 

  8. Rubin J, Rubin C, Jacobs CR (2006) Review: molecular pathways mediating mechanical signaling in bone. Gene 367:1–16

    Article  Google Scholar 

  9. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Review: mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  Google Scholar 

  10. Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol 53:576–580 (Paris)

    Article  Google Scholar 

  11. Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE, Duncan RL (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol Cell Physiol 273:C810–C815

    Article  Google Scholar 

  12. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    Article  Google Scholar 

  13. Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates: an alternative to allometric limb bone scaling. J Theor Biol 107:321–327

    Article  Google Scholar 

  14. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  Google Scholar 

  15. Nordstorm P, Pettersson U, Lorentzont R (1998) Type of physical activity, muscle strength, and puberty stage as determinants of bone mineral density and bone areas in adolescent boys. J Bone Miner Res 13:1141–1148

    Article  Google Scholar 

  16. Patterson-Buckendahl PE, Cann CE, Grindeland RE (1985) Osteocalcin as an indicator of bone metabolism during spaceflights. Physiologist 28:S227–S228

    Google Scholar 

  17. Uhthoff HK, Jaworski ZF (1978) Bone loss in response to long term immobilization. J Bone Joint Surg Br 60:420–429

    Google Scholar 

  18. Wolff J. Das Gesetz der Transformation der Knochen (1892) Berlin, Germany

  19. Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomech Eng 113:191–197

    Article  Google Scholar 

  20. Basso N, Heersche JN (2002) Characteristics of in vitro osteoblastic cell loading models. Bone 30:347–351

    Article  Google Scholar 

  21. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  Google Scholar 

  22. Zhang D, Weinbaum S, Cowin SC (1998) Estimates of the peak pressures in bone pore water. J Biomech Eng 120:697–703

    Article  Google Scholar 

  23. Jacobs CR, Temiyasathit S, Catillo AB (2010) Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng 12:369–400

    Article  Google Scholar 

  24. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J 13:S101–S112

    Article  Google Scholar 

  25. Piekarski K, Munro M (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269:80–82

    Article  Google Scholar 

  26. Tate MLK, Steck R, Forwood MR, Niederer P (2000) In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol 203:2737–2745

    Google Scholar 

  27. Dillaman RM, Roer RD, Gay DM (1991) Fluid movement in bone: theoretical and empirical. J Biomech 24:163–177

    Article  Google Scholar 

  28. You L, Cowin SC, Schaffler MB, Weinbaum S (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 34:1375–1386

    Article  Google Scholar 

  29. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading induced bone fluid shear stresses. J Biomech 27:339–360

    Article  Google Scholar 

  30. Pijush K, Kundu IMC (2004) Fluid mechanics. Elsevier Academic Press, San Diego

    Google Scholar 

  31. Adamo L, Cardena GG (2011) Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal 15:1463–1473

    Article  Google Scholar 

  32. Han Y, Cowin SC, Schaffler MB, Weinbaum S (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci 101:16689–16694

    Article  Google Scholar 

  33. Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28:1281–1297

    Article  Google Scholar 

  34. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969–976

    Article  Google Scholar 

  35. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355

    Article  Google Scholar 

  36. Huang C, Ogawa R (2010) Mechanotransduction in bone repair and regeneration. FASEB J 24:3625–3632

    Article  Google Scholar 

  37. Swan CC, Lakes RS, Brand RA, Stewart KJ (2003) Micromechanically based poroelastic modeling of fluid flow in Harvesian bone. J Biomech Eng 125:25–37

    Article  Google Scholar 

  38. Goulet GC, Hamilton N, Cooper D, Coombe D, Tran D, Martinuzzi R, RvF Zernicke (2008) Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone. J Biomech 41:2169–2175

    Article  Google Scholar 

  39. McCoy RJ, O’Brien FJ (2010) Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev 16:587–601

    Article  Google Scholar 

  40. Yang P, Bruggemann G, Rittweger J (2011) What do we currently know from in vivo bone strain measurements in humans. J Musculoskelet Neuronal Interact 11:8–20

    Google Scholar 

  41. Hillsley MV, Frangos JA (1994) Review: bone tissue engineering—the role of interstitial fluid flow. Biotechnol Bioeng 43:573–581

    Article  Google Scholar 

  42. Foldhazy Z, Arndt A, Milgrom C, Finestone A, Ekenman I (2005) Exercise-induced strain and strain rate in the distal radius. J Bone Joint Surg Br 87:261–266

    Article  Google Scholar 

  43. Lim JY, Loiselle AE, Lee JS, Zhang Y, Salvi JD, Donahue HJ (2011) Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J Orthop Res 29:1627–1633

    Article  Google Scholar 

  44. Burr DB, Milgrom C, Forwood M, Nysks M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410

    Article  Google Scholar 

  45. Liedert A, (2005) Mechanobiology of bone tissue and bone cells. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Moscow: Academia. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7494/

  46. Duncan RL (1995) Transduction of mechanical strain in bone. ASGSB Bull 8:49–62

    Google Scholar 

  47. Altman G, Horan R, Martin I, Farhadi J, Stark P, Volloch V, Novakovic GV, Richmond J, Kaplan DL (2001) Cell differentiation by mechanical stress. FASEB J 10:270–272

    Google Scholar 

  48. Verbruggen SW, Vaughan TJ, McNamara LM (2012) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 9:2735–2744

    Article  Google Scholar 

  49. Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14

    Article  Google Scholar 

  50. Thomas GP, Haj AJE (1996) Bone marrow stromal cells are load responsive in vitro. Calcif Tissue Int 58:101–108

    Article  Google Scholar 

  51. Lee DA, Knight MM, Campbell JJ, Bader DL (2010) Stem cell mechanobiology. J Cell Biochem 112:1–9

    Article  Google Scholar 

  52. MacQueen L, Sun Y, Simmons CA (2013) Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 10:20130179

    Article  Google Scholar 

  53. Castillo AB, Jacobs CR (2010) Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 8:98–104

    Article  Google Scholar 

  54. Hu M, Yeh R, Lien M, Teeratananon M, Agarwal K, Qin Y (2013) Dynamic fluid flow Mechanical stimulation modulates bone marrow mesenchymal stem cells. Bone Res 1:98–104

    Article  Google Scholar 

  55. Salazar GT, Ohneda O (2012) Review of biophysical factors affecting osteogenic differentiation of human adult adipose derived stem cells. Biophys Rev 5:11–28

    Article  Google Scholar 

  56. Chen JC, Jacobs CR (2013) Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res Ther 4:107

    Article  Google Scholar 

  57. Castillo AB, Jacobs CR (2011) Skeletal mechanobiology. In: Nagatomi J (ed) Mechanobiology handbook, vol 9. CRC Press, Boca Raton, pp 179–228

    Chapter  Google Scholar 

  58. Trumbull A, Subramanian G, Yildirim-Ayan E (2016) Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online 15:43

    Article  Google Scholar 

  59. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    Article  Google Scholar 

  60. Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH (2008) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49:7–14

    Article  Google Scholar 

  61. Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2004) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone and Miner Metab 23:219–225

    Article  Google Scholar 

  62. Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA (2009) Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun 388:601–605

    Article  Google Scholar 

  63. Sen B, Xie Z, Case N et al (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149:6065–6075

    Article  Google Scholar 

  64. Doyle AM, Nerem RM, Ahsan T (2009) Human mesenchymal stem cells form multicellular structures in response to applied cyclic strain. Ann Biomed Eng 37:783–793

    Article  Google Scholar 

  65. Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, Hesse E (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59:355–363

    Article  Google Scholar 

  66. Wall ME, Rachlin A, Otey CA, Loboa EG (2007) Human adipose derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. Am J Physiol Cell Physiol 293:C1532–C1538

    Article  Google Scholar 

  67. Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ (2009) Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108:1263–1273

    Article  Google Scholar 

  68. Ward DF, Salaszny RM, Klees RF, Backie J, Agius P, Bennett K, Boskey A, Plopper GE (2007) Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev 16:467–480

    Article  Google Scholar 

  69. Aubin JE, Triffitt JT, Bilezikian JP, Raisz LG, Rodan GA (eds) (2002) Mesenchymal stem cells and osteoblast differentiation. Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 59–81

    Google Scholar 

  70. Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16

    Article  Google Scholar 

  71. Roy B, Das T, Mishra D, Maiti TK, Chakraborty S (2014) Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol 6:289–299

    Article  Google Scholar 

  72. Kaspar D, Seidl W, Wilke CN, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880

    Article  Google Scholar 

  73. Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136:528–535

    Article  Google Scholar 

  74. Somjen D, Binderman I, Burger EH, Harell A (1980) Bone remodeling induced by physical stress is prostaglandin E2 mediated. Biochim Biophys Acta 627:91–100

    Article  Google Scholar 

  75. Murray DW, Rushton N (1990) The effect of strain on bone cell prostaglandin E2 release: a new experimental method. Calcif Tissue Int 47:35–39

    Article  Google Scholar 

  76. Forwood MR (1996) Inducible cyclo-oxygenase (Cox-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693

    Article  Google Scholar 

  77. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mice bone cells. J Bone Miner Res 12:45–51

    Article  Google Scholar 

  78. Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271:E205–E208

    Google Scholar 

  79. Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL (1998) Fluid shear induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol 275:C1591–C1601

    Article  Google Scholar 

  80. Prideaux M, Findlay DM, Atkins GJ (2016) Osteocytes: the master cells in bone regeneration. Curr Opin Pharmacol 28:24–30

    Article  Google Scholar 

  81. Ajubi NE, Klein-Nulend J, Alblas MJ, Burger Nijweide P J (1999) Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am Physiol. 276:E171–E178

    Google Scholar 

  82. Lee KL, Guevarra MD, Nguyen AM, Chua MC, Wang Y, Jacobs CR (2015) The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4:7

    Article  Google Scholar 

  83. McAllister TN, Frangos JA (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14:930–936

    Article  Google Scholar 

  84. Vanhoutte PM (1992) Role of calcium and endothelium in hypertension, cardiovascular disease and subsequent vascular events. J Cardiovasc Pharmacol 3:S6–S10

    Article  Google Scholar 

  85. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan R (2000) Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression. Am J Physiol 278:C989–C997

    Article  Google Scholar 

  86. Lomri A, Marie PJ (1990) Distinct effects of calcium- and cyclic AMP-enhancing factors on cytoskeletal synthesis and assembly in mouse osteoblastic cell. Biochim Biophys Acta 1052:179–186

    Article  Google Scholar 

  87. Adachi T, Aonuma Y, Tanaka M, Hojo M, Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42:1989–1995

    Article  Google Scholar 

  88. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122:387–393

    Article  Google Scholar 

  89. Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech 34:671–677

    Article  Google Scholar 

  90. Mullender M, El Haj AJ, Yang Y, Duin MA, Burger EH, Klein-Nulend J (2003) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissues. Med Biol Eng Comput 42:14–21

    Article  Google Scholar 

  91. Liu C, Zhao Y, Cheung Y, Gandhi R, Wang L, You L (2010) Effect of cyclic hydraulic pressure of osteocytes. Bone 46:1449–1456

    Article  Google Scholar 

  92. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  Google Scholar 

  93. Sugawara Y, Kamioka H, Honjo T, Tezuka K, Takano-Yamamoto T (2005) Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36:877–883

    Article  Google Scholar 

  94. Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J (2006) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 348:1082–1088

    Article  Google Scholar 

  95. Klein-Nulend J, Nijweide PJ, Burger EH (2003) Osteocyte and bone structure. Curr Osteoporos Rep 1:5–10

    Article  Google Scholar 

  96. Klein-Nulend J, Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995) Sensitivity of osteocytes to biochemical stress in vitro. FASEB J 9:441–445

    Article  Google Scholar 

  97. Rath AL, Bonewald LF, Ling J, Jiang JX, VanDyke MK, Nicolella DP (2010) Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide in response to fluid flow. J Biomech 43:1560–1564

    Article  Google Scholar 

  98. Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021

    Article  Google Scholar 

  99. Ajubia NE, Klein-Nulend J, Nijweideb PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem Biophys Res Commun 225:62–68

    Article  Google Scholar 

  100. Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner 4:783–788

    Article  Google Scholar 

  101. Inaoka T et al (1995) Sequential analysis of gene expression after an osteogenic stimulus: c-fos expression is induced in osteocytes. Biochem Biophys Res Commun 217:264–270

    Article  Google Scholar 

  102. Dewey CF (1984) Effects of fluid flow on living vascular cells. J Biomech Eng 106:31–35

    Article  Google Scholar 

  103. Huang Y, Jia XL, Bai K, Gong XH, Fan YB (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41:497–505

    Article  Google Scholar 

  104. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055

    Article  Google Scholar 

  105. Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design consideration for cellular scale studies. Lab Chip 4:91–97

    Article  Google Scholar 

  106. Malone AM, Narain R, Jacobs CR (2005) Biomechanical regulation of mesenchymal stem cell and progenitor cells and the implication for regenerative medicine. Curr Opin Orthop 16:363–367

    Article  Google Scholar 

  107. Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991

    Article  Google Scholar 

  108. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J (2005) Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 288:H1915–H1924

    Article  Google Scholar 

  109. Metallo CM, Vodyanik MA, de Pablo JJ, Slukvin II, Palecek SP (2008) The response of human embryonic stem cell derived endothelial cells to shear stress. Biotechnol Bioeng 100:830–837

    Article  Google Scholar 

  110. Glossop JR, Cartmell SH (2009) Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr Patterns 9:381–388

    Article  Google Scholar 

  111. Grellier M, Bareille R, Bourget C, Amedee J (2009) Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med 3:302–309

    Article  Google Scholar 

  112. Kreke MR, Goldstein AS (2004) Hydrodynamic shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Eng 8:780–788

    Article  Google Scholar 

  113. Tjabringa GS, Vezeridis PS, Zandieh-Doulabi B, Helder MN, Wuisman PI, Klein-Nulend J (2006) Polyamines modulate nitric oxide production and COX-2 gene expression in response to mechanical loading in human adipose tissue-derived mesenchymal stem cells. Stem Cells 10:2262–2269

    Article  Google Scholar 

  114. Yourek G, McCormicj SM, Mao JJ, Reilly GC (2010) Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 5:713–724

    Article  Google Scholar 

  115. Arnsdorf E, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553

    Article  Google Scholar 

  116. Yu W, Qu H, Hu G, Zhang Q, Soung K, Guan H, Liu T, Qin J (2014) A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts. PLoS ONE 9(2):1–7

    Google Scholar 

  117. Reich KM, Frangos JA (1991) Effect of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Am J Physiol 261:C428–C432

    Article  Google Scholar 

  118. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371

    Article  Google Scholar 

  119. Donahue TLH, Haut TR, Yelloley CE, Donahue HJ, Jacobs CR (2003) Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulate h by chemotransport. J Biomech 36:1363–1371

    Article  Google Scholar 

  120. Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD (2001) Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol 90:1849–1854

    Article  Google Scholar 

  121. Kapur S, Baylink DJ, Lau KHW (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32:241–251

    Article  Google Scholar 

  122. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts- correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  Google Scholar 

  123. Hu M, Tian GW, Gibbons DE, Jiao J, Qin YX (2015) Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys 579:55–61

    Article  Google Scholar 

  124. Kshitiz Park J S, Kim P, Helen W, Engler AJ, Levchenko A, Kim D (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camp) 4:1008–1018

    Article  Google Scholar 

  125. Lamers E, Walboomers XF, Domanski M, te Riet J, van Delft FC, Luttge R, Winnubst LA, Gardeniers HJ, Jansen JA (2010) The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials 31:3307–3316

    Article  Google Scholar 

  126. Van Kooten TG, Schakenraad JM, Van der Mei HC, Busscher HJ (1992) Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials 13:897–904

    Article  Google Scholar 

  127. Wan Y, Yang J, Yang J, Bei J, Wang S (2003) Cell adhesion on gaseous plasma modified poly-(-lactide) surface under shear stress field. Biomaterials 24:3757–3764

    Article  Google Scholar 

  128. Pawelec KM, Kluijtmans SGJM (2017) Biomineralization of recombinant peptide scaffolds: interplay among chemistry, architecture, and mechanics. ACS Biomater Sci Eng 3:1100–1108

    Article  Google Scholar 

  129. Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and TGF-β: the insoluble and soluble meet. Sci Signal 1:1–10

    Article  Google Scholar 

  130. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  131. Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15:147–154

    Article  Google Scholar 

  132. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-b. Biomaterials 32:3921–3930

    Article  Google Scholar 

  133. Holtorf HL, Jansen JA, Mikos AG (2005) Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell scaffold constructs in the absence of dexamethasone. J Biomed Mater Res A 72:326–334

    Article  Google Scholar 

  134. Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. PNAS 100:14683–14688

    Article  Google Scholar 

  135. Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscle Ligaments Tendons J 2:169–180

    Google Scholar 

  136. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev 7:211–224

    Article  Google Scholar 

  137. Zhao F, Chella R, Ma T (2006) Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng 96:584–595

    Article  Google Scholar 

  138. Williams KA, Saini S, Wick TM (2002) Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue-engineered. Biotechnol Prog 18:951–963

    Article  Google Scholar 

  139. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262

    Article  Google Scholar 

  140. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. PNAS 103:2488–2493

    Article  Google Scholar 

  141. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  Google Scholar 

  142. Annaz B, Hing KA, Kayser M, Buckland T, Di Silvio L (2004) Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J Microsc 215:100–110

    Article  Google Scholar 

  143. McMahon L (2007) The effect of cyclic tensile loading and growth factors on the chondrogenic differentiation of bone marrow derived mesenchymal stem cells in a collagen glycosaminoglycan scaffold. Thesis submitted to Trinity College Dublin, Dublin, Ireland

  144. Li Z, Yao SJ, Alini M, Stoddart MJ (2010) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin–polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A 16:575–584

    Article  Google Scholar 

  145. Bjerre L, Bunger CE, Kassem M, Mygind T (2008) Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 29:2616–2627

    Article  Google Scholar 

  146. Zhao F, Ma T (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and constructs development. Biotechnol Bioeng 91:482–493

    Article  Google Scholar 

  147. Stiehler M, Bunger C, Baatrup A, Lind M, Kassem M, Mygind T (2009) Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 89:96–107

    Google Scholar 

  148. Chen G, Xu R, Zhang C, Lv Y (2017) Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture. ACS Appl Mater Interfaces 9:1207–1218

    Article  Google Scholar 

  149. Yu HS, Won JE, Jin GZ, Kim HW (2012) Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores Open Access 1:124–136

    Article  Google Scholar 

  150. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29:476–482

    Article  Google Scholar 

  151. Campbell JJ, Lee DA, Bader DL (2006) Dynamic compressive strain influences chondrogenic gene expression in mesenchymal stem cells. Biorheology 43:455–470

    Google Scholar 

  152. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    Article  Google Scholar 

  153. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 111:2067–2076

    Google Scholar 

  154. Campbell JJ, Bader DL, Lee DA (2008) Mechanical loading modulates intracellular calcium signaling in human mesenchymal stem cells. J Appl Biomater Biomech 6:9–15

    Google Scholar 

  155. Kaushik A, Jayant RD, Sagar V, Nair M (2014) The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv 11:1635–1646

    Article  Google Scholar 

  156. Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci 108:67–72

    Article  Google Scholar 

  157. Veronick JA, Assanah F, Nair LS, Vyas V, Huey BD, Khan Y (2016) The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair. Exp Biol Med 241:1149–1156

    Article  Google Scholar 

  158. Veronick JA, Assanah F, Piscopo N, Kutes Y, Vyas V, Nair LS, Huey BD, Khan Y (2017) Mechanically loading cell/hydrogel constructs with low-intensity pulsed ultrasound for bone repair. Tissue Eng Part A 00:1–10

    Google Scholar 

  159. Doblare M, Garcia JM, Gomez MJ (2004) Modeling bone tissue fracture and healing: a review. Eng Fract Mech 71:13–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assanah, F., Khan, Y. Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review. J Mater Sci 53, 5618–5640 (2018). https://doi.org/10.1007/s10853-017-1948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1948-y

Keywords

Navigation