Skip to main content
Log in

Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present paper, the microwave synthesis of MOF-199 and its application as an electrode modifier for the simultaneous voltammetric determination of paracetamol (PAR) and caffeine (CAF) were demonstrated. The obtained materials were characterised by X-ray diffraction, a scanning electron microscope (SEM), nitrogen adsorption/desorption isotherms and thermal gravity. The microwave (MW) synthesis of MOF-199 has been compared to its conventional hydrothermal synthesis. It is found that by using the MW synthesis, MOF-199 can be obtained in a much shorter synthesis time with improved yield and textural properties. The electrode modified by MOF-199 was used in order to develop an electroanalytical method that can be used to simultaneously quantify PAR and CAF. The kinetic parameters of the electrode reaction process were also investigated. This proposed method was successfully employed for the simultaneous detection of PAR and CAF in pharmaceutical formulations using the standard addition method and the obtained results compared with the results determined by means of HPLC were found to be statistically similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Scheme 3
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta 618:54–60

    Article  Google Scholar 

  2. Rostagno M, Manchón N, D’Arrigo M, Guillamón E, Villares A, García-Lafuente A, Ramos A, Martínez J (2011) Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Anal Chim Acta 685:204–211

    Article  Google Scholar 

  3. Zen J-M, Ting Y-S, Shih Y (1998) Voltammetric determination of caffeine in beverages using a chemically modified electrode. Analyst 123:1145–1147

    Article  Google Scholar 

  4. Reynolds JEF (1996) Martindale: the extra pharmacopoeia. Pharmaceutical Press, London

    Google Scholar 

  5. The United States Pharmacopeia (2000) U.S. Pharmacopeial Convention, Rockville

  6. Sirajuddin AR, Khaskheli AR, Shah A, Bhanger MI, Niaz A, Mahesar S (2007) Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim Acta Part A Mol Biomol Spectrosc 68:747–751

    Article  Google Scholar 

  7. Chiou J-F, Chen S-L, Chen S-M, Tsou S-S (2008) Novel spectrophotometric method for RAPID quantifying acetaminophen concentration in emergent situation. J Food Drug Anal 16:36–40

    Google Scholar 

  8. Kartal M (2001) LC method for the analysis of paracetamol, caffeine and codeine phosphate in pharmaceutical preparations. J Pharm Biomed Anal 26:857–864

    Article  Google Scholar 

  9. Gómez MJ, Petrović M, Fernández-Alba AR, Barceló D (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. J Chromatogr A 1114:224–233

    Article  Google Scholar 

  10. Moţ AC, Soponar F, Medvedovici A, Sârbu C (2010) Simultaneous spectrophotometric determination of aspirin, paracetamol, caffeine, and chlorphenamine from pharmaceutical formulations using multivariate regression methods. Anal Lett 43:804–813

    Article  Google Scholar 

  11. Llorent-Martínez E, Šatínský D, Solich P, Ortega-Barrales P, Molina-Díaz A (2007) Fluorimetric SIA optosensing in pharmaceutical analysis: determination of paracetamol. J Pharm Biomed Anal 45:318–321

    Article  Google Scholar 

  12. Dejaegher B, Bloomfield M, Smeyers-Verbeke J, Vander Heyden Y (2008) Validation of a fluorimetric assay for 4-aminophenol in paracetamol formulations. Talanta 75:258–265

    Article  Google Scholar 

  13. Dou Y, Sun Y, Ren Y, Ju P, Ren Y (2005) Simultaneous non-destructive determination of two components of combined paracetamol and amantadine hydrochloride in tablets and powder by NIR spectroscopy and artificial neural networks. J Pharm Biomed Anal 37:543–549

    Article  Google Scholar 

  14. Baptistao M, de Carvalho Rocha WF, Poppi RJ (2011) Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region. J Mol Struct 1002:167–171

    Article  Google Scholar 

  15. Lourencao BC, Medeiros RA, Rocha-Filho RC, Mazo LH, Fatibello-Filho O (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78:748–752

    Article  Google Scholar 

  16. Noviandri I, Rakhmana R (2012) Carbon paste electrode modified with carbon nanotubes and poly (3-aminophenol) for voltammetric determination of paracetamol. Int J Electrochem Sci 7:4479–4487

    Google Scholar 

  17. Bayram E, Akyilmaz E (2016) Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sens Actuators B Chem 233:409–418

    Article  Google Scholar 

  18. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    Article  Google Scholar 

  19. Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151

    Article  Google Scholar 

  20. Zen J-M, Ting Y-S (1997) Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Anal Chim Acta 342:175–180

    Article  Google Scholar 

  21. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638–8648

    Article  Google Scholar 

  22. Wang S-F, Xie F, Hu R-F (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens Actuators B Chem 123:495–500

    Article  Google Scholar 

  23. Salehi S, Anbia M (2017) High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy Fuels 31:5376–5384

    Article  Google Scholar 

  24. Ho SL, Yoon IC, Cho CS, Choi H-J (2015) A recyclable metal-organic framework MOF-199 catalyst in coupling and cyclization of β-bromo-α, β-unsaturated carboxylic acids with terminal alkynes leading to alkylidenefuranones. J Organomet Chem 791:13–17

    Article  Google Scholar 

  25. Pohle R, Tawil A, Davydovskaya P, Fleischer M (2011) Metal organic frameworks as promising high surface area material for work function gas sensors. Proc Eng 25:108–111

    Article  Google Scholar 

  26. Loera-Serna S, Oliver-Tolentino MA, de Lourdes López-Núñez M, Santana-Cruz A, Guzmán-Vargas A, Cabrera-Sierra R, Beltrán HI, Flores J (2012) Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J Alloys Compd 540:113–120

    Article  Google Scholar 

  27. Khan IA, Badshah A, Nadeem MA, Haider N, Nadeem MA (2014) A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int J Hydrog Energy 39:19609–19620

    Article  Google Scholar 

  28. Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W (2015) The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65

    Article  Google Scholar 

  29. Wang X, Lu X, Wu L, Chen J (2015) 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens Bioelectron 65:295–301

    Article  Google Scholar 

  30. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Article  Google Scholar 

  31. Vishnyakov A, Ravikovitch PI, Neimark AV, Bülow M, Wang QM (2003) Nanopore structure and sorption properties of Cu-BTC metal-organic framework. Nano Lett 3:713–718

    Article  Google Scholar 

  32. Seo Y-K, Hundal G, Jang IT, Hwang YK, Jun C-H, Chang J-S (2009) Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater 119:331–337

    Article  Google Scholar 

  33. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636

    Article  Google Scholar 

  34. Li Z-Q, Qiu L-G, Xu T, Wu Y, Wang W, Wu Z-Y, Jiang X (2009) Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater Lett 63:78–80

    Article  Google Scholar 

  35. Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 31:3642–3644

    Article  Google Scholar 

  36. Haque E, Khan NA, Park JH, Jhung SH (2010) Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem A Eur J 16:1046–1052

    Article  Google Scholar 

  37. Ni Z, Masel RI (2006) Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128:12394–12395

    Article  Google Scholar 

  38. Jhung SH, Lee JH, Forster PM, Férey G, Cheetham AK, Chang JS (2006) Microwave synthesis of hybrid inorganic–organic porous materials: phase-selective and rapid crystallization. Chem A Eur J 12:7899–7905

    Article  Google Scholar 

  39. Jhung SH, Lee JH, Yoon JW, Serre C, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19:121–124

    Article  Google Scholar 

  40. Klinowski J, Paz FA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321–330

    Article  Google Scholar 

  41. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. ChemPhysChem 7:296–319

    Article  Google Scholar 

  42. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88

    Article  Google Scholar 

  43. Marx S, Kleist W, Baiker A (2011) Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. J Catal 281:76–87

    Article  Google Scholar 

  44. Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (2006) Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(BTC)2] (BTC = benzene-1,3,5-tricarboxylate). Chemistry 12:7353–7363

    Article  Google Scholar 

  45. Krawiec P, Kramer M, Sabo M, Kunschke R, Fröde H, Kaskel S (2006) Improved hydrogen storage in the metal-organic framework Cu3(BTC)2. Adv Eng Mater 8:293–296

    Article  Google Scholar 

  46. Miner DJ, Rice JR, Riggin RM, Kissinger PT (1981) Voltammetry of acetaminophen and its metabolites. Anal Chem 53:2258–2263

    Article  Google Scholar 

  47. Chitravathi S, Munichandraiah N (2016) Voltammetric determination of paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy carbon electrode. J Electroanal Chem 764:93–103

    Article  Google Scholar 

  48. Soleymani J, Hasanzadeh M, Shadjou N, Jafari MK, Gharamaleki JV, Yadollahi M, Jouyban A (2016) A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C 61:638–650

    Article  Google Scholar 

  49. Bard AJ, Faulkner LR (2001) Fundamentals and applications: electrochemical methods. Wiley, New York

    Google Scholar 

  50. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  Google Scholar 

  51. Li C (2007) Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloids Surf B 55:77–83

    Article  Google Scholar 

  52. Švorc Lu, Tomčík P, Svítková J, Rievaj M, Bustin D (2012) Voltammetric determination of caffeine in beverage samples on bare boron-doped diamond electrode. Food Chem 135:1198–1204

    Article  Google Scholar 

  53. Sharp M, Petersson M, Edström K (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem Interfacial Electrochem 95:123–130

    Article  Google Scholar 

  54. Horwitz W, Albert R (1997) Quality issues the concept of uncertainty as applied to chemical measurements. Analyst 122:615–617

    Article  Google Scholar 

  55. Zhang X, Wu L, Zhou J, Zhang X, Chen J (2015) A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J Electroanal Chem 742:97–103

    Article  Google Scholar 

  56. Habibi B, Gahramanzadeh R (2011) Fabrication and characterization of non-platinum electrocatalyst for methanol oxidation in alkaline medium: nickel nanoparticles modified carbon-ceramic electrode. Int J Hydrog Energy 36:1913–1923

    Article  Google Scholar 

  57. Lau O-W, Luk S-F, Cheung Y-M (1989) Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 114:1047–1051

    Article  Google Scholar 

  58. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens Actuators B Chem 192:634–641

    Article  Google Scholar 

  59. Saciloto TR, Cervini P, Cavalheiro ÉT (2013) Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode. J Braz Chem Soc 24:1461–1468

    Google Scholar 

  60. Eisele APP, Clausen DN, Tarley CRT, Dall’Antonia LH, Sartori ER (2013) Simultaneous square-wave voltammetric determination of paracetamol, caffeine and orphenadrine in pharmaceutical formulations using a cathodically pretreated boron-doped diamond electrode. Electroanalysis 25:1734–1741

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project B2016-DHH-20 sponsored by Ministry of Education and Training, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minh, T.T., Phong, N.H., Van Duc, H. et al. Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode. J Mater Sci 53, 2453–2471 (2018). https://doi.org/10.1007/s10853-017-1715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1715-0

Keywords

Navigation