Skip to main content
Log in

Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NPs) with a particle size less than 50 nm were prepared using the solvothermal method from zinc acetate (Zn(CH3COO)2·2H2O) and hydrogen peroxide (H2O2) in the presence of organic solvent (methanol or ethanol). PMMA/ZnO nanocomposite films were prepared by blending ZnO NPs with polymethylmethacrylate (PMMA) using solution mixing at concentration range of 0–40 wt%. The results show that the methanol was more efficient in the synthesis of ZnO NPs than ethanol. The thermal stability and glass temperature (Tg) were enhanced by about 60 and 22 K, respectively. UV-shielding efficiency (reduced transmission) was improved by 45 ± 5% with increasing ZnO NPs content from 2 to 40 wt%. The combination of the thermal and optical enhanced properties gives potential applications in different domains, i.e., optics, photonics, and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sanaz A, Siyamak S, Nor Azowa I, Fatehi A (2012) Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Int J Mol Sci 13(4):4508–4522

    Google Scholar 

  2. Khrenov V, Klapper M, Koch M, Mullen K (2005) Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromol Chem Phys 206:95–101

    Article  Google Scholar 

  3. Barhoum A, Van Lokeren L, Rahier H, Dufresne A, VanAssche G (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50:7908–7918. doi:10.1007/s10853-015-9327-z

    Article  Google Scholar 

  4. Kongsinlark A, Rempel G, Prasassarakich P (2012) Synthesis of monodispersed polyisoprene-silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite. Chem Eng J 193–194:215–226

    Article  Google Scholar 

  5. Tucureanu V, Matei A, Mihalache L, Danila M, Popescu M, Bita B (2015) Synthesis and characterization of YAG:Ce, Gd and YAG:Ce, Gd/PMMA nanocomposites for optoelectronic applications. J Mater Sci 50(4):1883–1890. doi:10.1007/s10853-014-8751-9

    Article  Google Scholar 

  6. Oberdisse J (2006) Aggregation of colloidal nanoparticles in polymer matrices. Soft Matter 2:29–36

    Article  Google Scholar 

  7. Peng XM, Chen YW, Li F, Zhou WH, Hu YH (2009) Preparation and optical properties of ZnO@PPEGMA. Appl Surf Sci 255:7158–7163

    Article  Google Scholar 

  8. Chen XL, Zhou ZW, Lv WC, Huang T, Hu SC (2009) Preparation of core–shell structured T-ZnOw/polyaniline composites via graft polymerization. Mater Chem and Phys 115(1):258–262

    Article  Google Scholar 

  9. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  10. Chen L, Wang C, Li Q, Yang S, Hou L, Chen S (2009) In situ synthesis of transparent fluorescent ZnS–polymer nanocomposite hybrids through catalytic chain transfer polymerization technique. J Mat Sci 44(13):3413–3419. doi:10.1007/s10853-009-3453-4

    Article  Google Scholar 

  11. Morselli D, Messori M, Bondioli F (2011) Poly(methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis. J Mater Sci 46:6609–6617. doi:10.1007/s10853-011-5610-9

    Article  Google Scholar 

  12. Weickmann H, Delto R, Thomann R, Brenn R, Döll W, Mülhaupt R (2007) PMMA nanocomposites and gradient materials prepared by means of polysilsesquioxane (POSS) self-assembly. J Mat Sci 42(1):87–92. doi:10.1007/s10853-006-1044-1

    Article  Google Scholar 

  13. Demir MM, Koynov K, Akbey U, Bubeck C, Park I, Lieberwirth I, Wegner G (2007) Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules 40:1089–1100

    Article  Google Scholar 

  14. DaiPrè M, Martucci A, Martin DJ, Lavina S, Di Noto V (2015) Structural features, properties, and relaxations of PMMA-ZnO nanocomposite. J Mat Sci 50(5):2218–2228. doi:10.1007/s10853-014-8784-0

    Article  Google Scholar 

  15. Johnson LP, Matisons JG (2009) Investigation of the thermal and structural properties of single-molecule magnet/polymer nanocomposite films. J Mat Sci 44(11):2805–2813. doi:10.1007/s10853-009-3369-z

    Article  Google Scholar 

  16. Gao F (2004) Clay/polymer composites: the story. Mater Today 7(11):50–55

    Article  Google Scholar 

  17. Bogue R (2011) Nanocomposites: a review of technology and applications. Assem. Autom 31(2):106–112

    Article  Google Scholar 

  18. Salafsky JS, Lubberhuizen WH, Schropp REI (1998) Photoinduced charge separation and recombination in a conjugated polymer-semiconductor nanocrystal composite. Chem Phys Lett 209:297–303

    Article  Google Scholar 

  19. Cheng J, Wang S, Li XY, Yan Y, Yang S, Yang CL, Wang JN, Ge WK (2001) Fast interfacial charge separation in chemically hybridized CdS-PVK nanocomposites studied by photoluminescence and photoconductivity measurements. Chem Phys Lett 333:375–380

    Article  Google Scholar 

  20. Sun L, Fu X, Wang M, Liu C, Liao C, Yan C (2000) Synthesis of CdS nanocrystal within copolymer. J Lumin 87–89:538–541

    Article  Google Scholar 

  21. Zettl M, Mayer O, Klampaftis E, Richards BS (2016) Host polymer investigation for luminescent solar concentrators. Energy Technol. doi:10.1002/ente.201600498

    Google Scholar 

  22. Sun D, Miyatake N, Sue H-J (2007) Transparent PMMA/ZnO nanocomposite films based on colloidal ZnO quantum dots. Nanotechnology 18(21):215606

    Article  Google Scholar 

  23. Brostow W, Dutta M, Ricardode Souza T, Rusek P, Marcos de Medeiros A, Ito EN (2010) Nanocomposites of poly(methyl methacrylate) (PMMA) and montmorillonite (MMT) Brazilian clay: a tribological study. Express Polym Lett 4(9):570–575

    Article  Google Scholar 

  24. Zheng J, Su Q, Wang C, Cheng G, Zhu R, Shi J, Yao K (2011) Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material. J Mater Sci Mater M 22(4):1063–1071

    Article  Google Scholar 

  25. Yang F, Nelson GL (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91(6):3844–3850

    Article  Google Scholar 

  26. Fu HP, Hong RY, ZhangYJ LiHZ, XuB Zheng Y, Wei DG (2009) Preparation and properties investigation of PMMA/silica composites derived from silicic acid. Polym Adv Technol 20:84–91

    Article  Google Scholar 

  27. Li Z, Chen S, Nambiar S, Sun Y, Zhang M, Zheng W, Yeow JT (2016) PMMA/MWCNT nanocomposite for proton radiation shielding applications. Nanotechnology 27(23):234001

    Article  Google Scholar 

  28. Zhang Q, Zhong GJ, Huang WX (2016) Towards transparent PMMA/SiO2 nanocomposites with promising scratch-resistance by manipulation of SiO2 aggregation followed by in situ polymerization. J Appl Polym Sci 134(12):44612. doi:10.1002/app.44612

  29. Sreeja R, John J, Aneesh PM, Jayaraj MK (2010) Linear and nonlinear optical properties of luminescent ZnO nanoparticles embedded in PMMA matrix. Opt Commun 283(14):2908–2913

    Article  Google Scholar 

  30. Matsuyama K, Mishima K, Kato T, Irie K, Mishima K (2012) Transparent polymeric hybrid film of ZnO nanoparticle quantum dots and PMMA with high luminescence and tunable emission color. J Colloid Interface Sci 367:171–177

    Article  Google Scholar 

  31. Shim JW, Kim JW, Han SH, ChangIh-S Kim HK, Kang HH, Lee OS, Suh KD (2002) Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids Surf A 207:105–111

    Article  Google Scholar 

  32. Balen R, Vidotto da Costa W, De Lara Andrade J et al (2016) Structure, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: potential application in tissue engineering. Appl Surf Sci 385:257–267

    Article  Google Scholar 

  33. Eita M, Wågberg L, Muhammed M (2012) Spin-assisted multilayers of poly(methyl methacrylate) and zinc oxide quantum dots for ultraviolet-blocking applications. ACS Appl Mater Interfaces 4:2920–2925

    Article  Google Scholar 

  34. Sato M, Kawata A, Morito S, Sato Y, Yamaguchi I (2008) Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide quantum dots. Eur Polym J 44:3430–3438

    Article  Google Scholar 

  35. Barhoum A, Van Assche G, Rahier H, Fleisch M, Bals S, Delplancked M-P, Leroux F, Bahnemann D (2017) Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Mater Design, 119:270–276. http://www.sciencedirect.com/science/journal/02641275/119/supp/C

  36. Barhoum A, Melcher J, Van Assche G, Rahier H, Bechelany M, Fleisch M, Bahnemann D (2017) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52:2746–2762. doi:10.1007/s10853-016-0567-3

    Article  Google Scholar 

  37. Yang CL, Wang JN, Ge WK, Guo L, Yang SH, Shen DZ (2001) Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J Appl Phys 90(9):4489–4493. doi:10.1063/1.1406973

    Article  Google Scholar 

  38. Tong YH, Liu YC, Lu SX, Dong L, Chen SJ, Xiao ZY (2004) The optical properties of ZnO nanoparticles capped with polyvinyl butyral. Sol-Gel Sci Technol 30:157–161

    Article  Google Scholar 

  39. Bechelanyl M, Amin A, Brioude A (2012) ZnO nanotubes by template-assisted sol-gel route. J Nanoparticle Res 14(8):980

    Article  Google Scholar 

  40. Elias J, Utke I, Yoon S (2013) Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates. Eectrochimica Acta 110 (SI):387–392

    Article  Google Scholar 

  41. Andre RS, Pavinatto A, Mercante LA, Paris EC, Mattoso LH, Correa DS (2015) Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Adv 5(90):73875–73881

    Article  Google Scholar 

  42. Demir MM, Memesa M, Castignolles P, Wegner G (2006) PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromol Rapid Commun 27:763–770

    Article  Google Scholar 

  43. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  44. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO Nanoparticles: x-ray peak profile analysis. J Theor Appl Phys 8:123–134

    Article  Google Scholar 

  45. Kumar N, Mittal H, Reddy L, Nair P, Ngila JC, Parashar V (2015) Morphogenesis of ZnO nanostructures: role of acetate (COOH) and nitrate (NO3 ) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties. RSC Adv 5:38801–38809

    Article  Google Scholar 

  46. Khoza PB, Moloto MJ and Sikhwivhilu LM (2012) The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave. J Nanotechnol 2012:1–6. doi:10.1155/2012/195106

  47. Ilangovan P, Sakvai MS, Kottur AB (2017) Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties. Mater Chem Phys 193:203–211

    Article  Google Scholar 

  48. Yadav A, Prasad V, Kathe A, Yadav D (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645

    Article  Google Scholar 

  49. Kyprianidou-Leodidou T, Margraf P, Caseri W, Suter UW, Walther P (1997) Polymer sheets with a thin nanocomposite layer acting as a UV filter. Polym Adv Technol 8:505–512

    Article  Google Scholar 

  50. Kulyk B, Kapustianyk V, Tsybulskyy V, Krupka O, Sahraoui B (2010) Optical properties of ZnO/PMMA nanocomposite films. J Alloys Compd 502:24–27

    Article  Google Scholar 

  51. Sharma AC (2006) Size-dependent energy band gap and dielectric constant within the generalized Penn model applied to a semiconductor nanocrystallite. J Appl Phys 100:084301

    Article  Google Scholar 

  52. Lee EJH, Ribeiro C, Giraldi TR, Longo E, Leite ER, Varela JA (2004) Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phys Lett 84:1745–1747

    Article  Google Scholar 

  53. Thakur A, Thakur P, Yadav K (2017) Morphological, optical and thermal properties of (TiO2)x embedded (PVC/PE)1—x (Where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) blend nanocomposites. Springer Proceed Phys 178:89–100

    Article  Google Scholar 

  54. Kim D, Jeon K, Lee Y, Seo J, Seo K, Han H, Khan S (2012) Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Prog Org Coat 74:435–442

    Article  Google Scholar 

  55. Nikolaidis AK, Achilias DS, Karayannidis GP (2011) Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Ind Eng Chem Res 50(2):571–579

    Article  Google Scholar 

  56. Khan M, Chen M, Wei C, Tao J, Huang N, Qi Z, Li L (2014) Synthesis at the nanoscale of ZnO into poly(methyl methacrylate) and its characterization. Appl Phys A 117:1085–1093

    Article  Google Scholar 

  57. Zhang Y, Zhuang S, Xu X, Hu J (2013) Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt Mater 36:169–172

    Article  Google Scholar 

  58. Raoufi D, Raoufi T (2009) The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl Surf Sci 255:5812–5817

    Article  Google Scholar 

  59. Kandare E, Deng H, Wang D, Hossenlopp JM (2006) Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxy methacrylate composites. Polym Adv Technol 17(4):312–319

    Article  Google Scholar 

  60. Holland BJ, Hay JN (2002) The effect of polymerization conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polym Degrad Stab 77:435–439

    Article  Google Scholar 

  61. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Effects of weak linkages on the thermal and oxidative degradation of poly(methy1 methacrylates). Macromolecules 19:2160–2168

    Article  Google Scholar 

Download references

Acknowledgement

S. H. would like to thank FUNDAPL and Chemical Department of Blida University to support this research works. A.B. would like to thank FWO—Research Foundation Flanders (Grant No. V450315 N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529—INSITU) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salim Hammani or Ahmed Barhoum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammani, S., Barhoum, A. & Bechelany, M. Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53, 1911–1921 (2018). https://doi.org/10.1007/s10853-017-1654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1654-9

Keywords

Navigation