Skip to main content
Log in

Dual effect of polypyrrole doping on cadmium sulfide for enhanced photocatalytic activity and robust photostability

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

After cadmium sulfide nanoparticles (CdS NPs) synthesized by a solvent-thermal precipitation method, a series of polypyrrole/CdS nanocomposites (PPy/CdS NCs) with different Py doping amounts were fabricated by in situ deposition oxidative polymerization. The encapsulated structure of PPy/CdS NCs was confirmed by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) indicates that the resulting CdS and optimal PPy/CdS-5 present low band gaps of 2.35 and 1.25 eV, respectively, which accounts for enhanced visible light response after PPy doping. Supporting by the results of photocatalytic performance and monitoring Cd2+ concentration by inductively coupled plasma optical emission spectrometer (ICP-OES), PPy/CdS NCs exhibit much higher photocatalytic performance on the degradation of rhodamine B (RhB) and methylene blue (MB) under visible light illumination than pristine CdS, which can be mainly attributed to enhanced stability as well as the photocatalytic activity of PPy/CdS NCs can be maintained without obvious decline after 10 cycles. PPy layer can effectively inhibit the occurrence of light corrosion of CdS itself. The possible mechanism about the improving photocatalytic activity from PPy doping and protection is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang X, Lei L, Zhang J, Chen Q, Bao J, Fang B (2009) A novel CdS/S-TiO2 nanotubes photocatalyst with high visible light activity. Sep Purif Technol 66:417–421. doi:10.1016/j.seppur.2008.12.014

    Article  Google Scholar 

  2. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y (2014) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater 23:4246–4254. doi:10.1002/adfm.201300255

    Article  Google Scholar 

  3. Huang Y, Sun F, Wu T, Wu Q, Huang Z, Su H, Zhang Z (2011) Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis. J Solid State Chem 184:644–648. doi:10.1016/j.jssc.2011.01.012

    Article  Google Scholar 

  4. Gupta J, Barick KC, Bahadur D (2011) Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. J Alloy Compd 509:6725–6730. doi:10.1016/j.jallcom.2011.03.157

    Article  Google Scholar 

  5. Adhikari S, Sarkar D, Madras G (2015) Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Adv 5:11895–11904. doi:10.1039/c4ra13210f

    Article  Google Scholar 

  6. Pant B, Park M, Kim HY, Park SJ (2016) Ag-ZnO photocatalyst anchored on carbon nanofibers: synthesis, characterization, and photocatalytic activities. Synth Met 220:533–537. doi:10.1016/j.synthmet.2016.07.027

    Article  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  Google Scholar 

  8. Liu Z, Zhao ZG, Miyauchi M (2010) Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: effect of interfacial modification. J Phys Chem C 113:17132–17137. doi:10.1021/jp906195f

    Article  Google Scholar 

  9. Liu MQ, Zhao J, Xiao CF, Quan Q, Li XF (2016) PPy-assisted fabrication of Ag/TiO2 visible-light photocatalyst and its immobilization on PAN fiber. Mater Design 104:428–435. doi:10.1016/j.matdes.2016.05.011

    Article  Google Scholar 

  10. Jing D, Guo L (2007) Efficient hydrogen production by a composite CdS/Mesoporous zirconium titanium phosphate photocatalyst under visible light. J Phys Chem C 111:13437–13441. doi:10.1021/jp071700u

    Article  Google Scholar 

  11. Singh S, Khare N (2015) CdS/ZnO core/shell nano-heterostructure coupled with reduced graphene oxide towards enhanced photocatalytic activity and photostability. Chem Phys Lett 634:140–145. doi:10.1016/j.cplett.2015.05.074

    Article  Google Scholar 

  12. Singh S, Khare N (2015) Magnetically separable, CoFe2O4 decorated CdS nanorods for enhanced visible light driven photocatalytic activity. Mater Lett 161:64–67. doi:10.1016/j.matlet.2015.07.035

    Article  Google Scholar 

  13. Yang Y, Liu E, Fan J, Hu X, Hou W, Wu F, Ma Y (2014) A Green and facile microwave-assisted synthesis of TiO2/graphene nanocomposite and their photocatalytic activity for methylene blue degradation. Russ J Phys Chem A 88:478–483. doi:10.1134/s0036024414030303

    Article  Google Scholar 

  14. Wang Z, Lu Y, Zhang M, Zhou G, Fei H, Shi H, Dai H (2014) Synthesis and characterization of Ag 3PO4/multiwalled carbon nanotube composite photocatalyst with enhanced photocatalytic activity and stability under visible light. J Mater Sci 49:1585–1593. doi:10.1007/s10853-013-7841-4

    Article  Google Scholar 

  15. Ovando-Medina VM, López RG, Castillo-Reyes BE, Alonso-Dávila PA, Martínez-Gutiérrez H, González-Ortega O, Farías-Cepeda L (2015) Composite of acicular rod-like ZnO nanoparticles and semiconducting polypyrrole photoactive under visible light irradiation for methylene blue dye photodegradation. Colloid Polym Sci 293:3459–3469. doi:10.1007/s00396-015-3717-2

    Article  Google Scholar 

  16. Fang R, Liang Y, Ge X, Du M, Li S, Li T, Li Z (2015) Preparation and photocatalytic degradation activity of TiO2/rGO/polymer composites. Colloid Polym Sci 293:1151–1157. doi:10.1007/s00396-015-3507-x

    Article  Google Scholar 

  17. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterizations, and its photocatalytic activity. Colloid Polym Sci 289:415–421. doi:10.1007/s00396-010-2350-3

    Article  Google Scholar 

  18. Peng T, Zeng P, Ke D, Liu X, Zhang X (2011) Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuel 25:2203–2210. doi:10.1021/ef200369z

    Article  Google Scholar 

  19. Wang D, Xu Z, Luo Q, Li X, An J, Yin R, Bao C (2015) Preparation and visible-light photocatalytic performances of g-C3N4 surface hybridized with a small amount of CdS nanoparticles. J Mater Sci 51:893–902. doi:10.1007/s10853-015-9417-y

    Article  Google Scholar 

  20. Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, Wei H, Han H-S, Fukumura D, Jain RK, Bawendi MG (2013) Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12:445–451. doi:10.1038/nmat3539

    Article  Google Scholar 

  21. Wang R, Xu D, Liu J, Li K, Wang H (2011) Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light. Chem Eng J 168:455–460. doi:10.1016/j.cej.2011.01.035

    Article  Google Scholar 

  22. Gotovtseva E, Biryukov A, Svetlichnyi V (2016) Novel composite material SiO2–Cd2SiO4@CdS: synthesis, properties, application. Key Eng Mater 683:312–317. doi:10.4028/www.scientific.net/KEM.683.312

    Article  Google Scholar 

  23. Huang L, Wang X, Yang J, Liu G, Han J, Li C (2013) Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C 117:11584–11591. doi:10.1021/jp400010z

    Article  Google Scholar 

  24. Mahadik MA, Subramanian A, Chung HS, Cho M, Jang JS (2017) CdS/Zr:Fe2o3 nanorod arrays with Al2O3 passivation layer for photoelectrochemical solar hydrogen generation. ChemSusChem 10:2030–2039. doi:10.1002/cssc.201700140

    Article  Google Scholar 

  25. Ma F, Wu Y, Shao Y, Zhong Y, Lv J, Hao X (2016) 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets. Nano Energy 27:466–474. doi:10.1016/j.nanoen.2016.07.014

    Article  Google Scholar 

  26. Subash B, Krishnakumar B, Sobral AJFN, Surya C, John NAA, Senthilraja A, Swaminathan M, Shanthi M (2016) Synthesis, characterization and daylight active photocatalyst with antiphotocorrosive property for detoxification of azo dyes. Sep Purif Technol 164:170–181. doi:10.1016/j.seppur.2016.03.029

    Article  Google Scholar 

  27. Tang Y, Hu X, Liu C (2014) Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Phys Chem Chem Phys 16:25321–25329. doi:10.1039/c4cp04057k

    Article  Google Scholar 

  28. Nuraje N, Su K, Yang NL, Matsui H (2008) Liquid/Liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2:502–506. doi:10.1021/nn7001536

    Article  Google Scholar 

  29. Hong SY, Park SM (2005) Electrochemistry of conductive polymers 36. pH dependence of polyaniline conductivities studied by current-sensing atomic force microscopy. J Phys Chem B 109:9305–9310. doi:10.1021/jp050173g

    Article  Google Scholar 

  30. Duan Y, Luo Q, Wang D, Li X, An J, Liu Q (2014) An efficient visible light photocatalyst poly(3-hexylthiophene)/CdS nanocomposite with enhanced antiphotocorrosion property. Superlattices Microstruct 67:61–71. doi:10.1016/j.spmi.2013.12.013

    Article  Google Scholar 

  31. Sharma S, Singh S, Khare N (2016) Synthesis of polyaniline/CdS (nanoflowers and nanorods) nanocomposites: a comparative study towards enhanced photocatalytic activity for degradation of organic dye. Colloid Polym Sci 294:917–926. doi:10.1007/s00396-016-3844-4

    Article  Google Scholar 

  32. Sankir ND, Dogan B (2010) Investigation of structural and optical properties of the CdS and CdS/PPy nanowires. J Mater Sci 45:6424–6432. doi:10.1007/s10853-010-4727-6

    Article  Google Scholar 

  33. Madani A, Nessark B, Boukherroub R, Chehimi MM (2011) Preparation and electrochemical behaviour of PPy-CdS composite films. J Electroanal Chem 650:176–181. doi:10.1016/j.jelechem.2010.10.017

    Article  Google Scholar 

  34. Wang D, Bao C, Luo Q, Yin R, Li X, An J, Xu Z (2015) Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. J Environ Chem Eng 3:1578–1585. doi:10.1016/j.jece.2015.05.013

    Article  Google Scholar 

  35. Wu Y, Wang L, Xiao M, Huang X (2008) A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J Non-Cryst Solids 354:2993–3000. doi:10.1016/j.jnoncrysol.2007.12.005

    Article  Google Scholar 

  36. Elango M, Nataraj D, Prem Nazeer K, Thamilselvan M (2012) Synthesis and characterization of nickel doped cadmium sulfide (CdS:Ni2+) nanoparticles. Mater Res Bull 47:1533–1538. doi:10.1016/j.materresbull.2012.02.033

    Article  Google Scholar 

  37. Zhao J, Li Z, Wang J, Li Q, Wang X (2015) Capsular polypyrrole hollow nanofibers: an efficient recyclable adsorbent for hexavalent chromium removal. J Mater Chem A 3:15124–15132. doi:10.1039/c5ta02525g

    Article  Google Scholar 

  38. He X, Gao L (2009) Morphology and phase evolution of hierarchical architectures of cadmium sulfide. J Phys Chem 113:10981–10989. doi:10.1021/jp9026833

    Google Scholar 

  39. Dallas P, Niarchos D, Vrbanic D, Boukos N, Pejovnik S, Trapalis C, Petridis D (2007) Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer 48:2007–2013. doi:10.1016/j.polymer.2007.01.058

    Article  Google Scholar 

  40. Wang Q, Lian J, Ma Q, Zhang S, He J, Zhong J, Li J, Huang H, Su B (2017) Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catal Today 281:662–668. doi:10.1016/j.cattod.2016.05.013

    Article  Google Scholar 

  41. Wasim F, Mahmood T, Ayub K (2016) An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases. Phys Chem Chem Phys 18:19236–19247. doi:10.1039/c6cp02271e

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the following sponsors: National Natural Science Foundation of China (No. 51673149), National Key Research and Development Program of China (2016YFB0302801-03), and National Science Foundation of Tianjin (17JCQNJC02700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Additional information

Jian Zhao and Yanru Shan are the first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Y., Zhao, J., Li, W. et al. Dual effect of polypyrrole doping on cadmium sulfide for enhanced photocatalytic activity and robust photostability. J Mater Sci 53, 2065–2076 (2018). https://doi.org/10.1007/s10853-017-1630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1630-4

Keywords

Navigation