Skip to main content
Log in

Facile synthesis of mesoporous NH4V4O10 nanoflowers with high performance as cathode material for lithium battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mesoporous NH4V4O10 nanoflowers have been synthesized as cathode materials for lithium-ion batteries by a β-cyclodextrin (β-CD)-assisted hydrothermal method. The flowers with clear outline and uniform size are composed of nanoflake for 200–300 nm in width and the length up to micron levels. There are mesopores with an average size of 3 nm on the surface of petals. The mesoporous nanoflowers deliver a high capacity of 242.8 mAh g−1 at a current density of 200 mA g−1 between 2.0 and 4.0 V. Even at high current density of 1000 mA g−1, it still retains 103.5 mAh g−1 (about 64.9% capacity) after 200 cycles. Besides, compared with the samples prepared without β-CD, the electrode of the mesoporous nanoflowers has a high rate of lithium transition during the lithiation/delithiation process. These results demonstrate such mesoporous NH4V4O10 nanoflowers could be promising as a high-performance cathode for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  Google Scholar 

  2. Li LY, Liu PC, Zhu KJ, Wang J, Liu JS, Qiu JH (2015) A general and simple method to synthesize well-crystallized nanostructured vanadium oxides for high performance Li-ion batteries. J Mater Chem A 3:9385–9389

    Article  Google Scholar 

  3. Liu PC, Zhu KJ, Gao YF, Wu QL, Liu JS, Qiu JH, Gu QL, Zheng HG (2013) Ultra-long VO2 (A) nanorods using the high-temperature mixing method under hydrothermal conditions: synthesis, evolution and thermochromic properties. CrystEngComm 15:2753–2761

    Article  Google Scholar 

  4. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 19:2526–2552

    Article  Google Scholar 

  5. Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett 7:490–495

    Article  Google Scholar 

  6. Yue Q, Jiang H, Hu Y, Jia G, Li C (2014) Mesoporous single-crystalline V2O5 nanorods assembled into hollow microspheres as cathode materials for high-rate and long-life lithium-ion batteries. Chem Commun 50:13362–13365

    Article  Google Scholar 

  7. Yu R, Zhang C, Meng Q, Chen Z, Liu H, Guo Z (2013) Facile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties. ACS Appl Mater Interfaces 5:12394–12399

    Article  Google Scholar 

  8. Wu C, Hu Z, Wang W, Zhang M, Yang J, Xie Y (2008) Synthetic paramontroseite VO2 with good aqueous lithium-ion battery performance. Chem Commun 33:3891–3893

    Article  Google Scholar 

  9. Xia X, Chao D, Ng CF, Lin J, Fan Z, Zhang H, Shen ZX, Fan HJ (2015) VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Mater Horiz 2:237–244

    Article  Google Scholar 

  10. Sarkar S, Banda H, Mitra S (2013) High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim Acta 99:242–252

    Article  Google Scholar 

  11. Trikalitis PN, Petkov V, Kanatzidis MG (2003) Structure of redox intercalated (NH4)0.5V2O5 center dot mH(2)O xerogel using the pair distribution function technique. Chem Mater 15:3337–3342

    Article  Google Scholar 

  12. Wu X, Tao Y, Dong L, Hong J (2004) Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. J Mater Chem 14:901–911

    Article  Google Scholar 

  13. Bachmann HG, Ahmed FR, Barnes WH (1961) The crystal structure of vanadium pentoxide. Zeitschrift für Kristallographie Crystalline Materials 115:110–131

    Article  Google Scholar 

  14. Sarkar S, Veluri PS, Mitra S (2014) Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance. Electrochim Acta 132:448–456

    Article  Google Scholar 

  15. Ren XN, Liang J, Tao ZL, Chen J (2011) Hydrothermal synthesis and electrochemical lithium storage performance of flower-like NH4V4O10 micro/nano structures. Chem J Chin Univ-Chin 32:618–623

    Google Scholar 

  16. Fang D, Cao Y, Liu R, Xu W, Liu S, Luo Z, Liang C, Liu X, Xiong C (2016) Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl Surf Sci 360:658–665

    Article  Google Scholar 

  17. Fei H, Wu X, Li H, Wei M (2014) Novel sodium intercalated (NH4)2V6O16 platelets: high performance cathode materials for lithium-ion battery. J Colloid Interface Sci 415:85–88

    Article  Google Scholar 

  18. Wang H, Huang K, Ren Y, Huang X, Liu S, Wang W (2011) NH4V3O8/carbon nanotubes composite cathode material with high capacity and good rate capability. J Power Sourc 196:9786–9791

    Article  Google Scholar 

  19. Liu PC, Bian K, Zhu KJ, Xu Y, Gao YF, Luo HJ, Lu L, Wang J, Liu JS, Tai G (2017) Ultrathin nanoribbons of in situ carbon-coated V3O7·H2O for high-energy and long-life li-ion batteries: synthesis, electrochemical performance and charge–discharge behavior. ACS Appl Mater Interfaces 9:17002–17012

    Article  Google Scholar 

  20. Liu PC, Zhu KJ, Xu Y, Bian K, Wang J, Tai G, Gao YF, Luo HJ, Lu L, Liu JS (2017) Hierarchical porous and intercalation-type V2O3 for high-performance anode materials of li-ion batteries. Chem Eur J 23:7538

    Article  Google Scholar 

  21. Liu PC, Zhou DH, Zhu KJ, Wu QL, Wang YF, Tai G, Zhang W, Gu QL (2016) Bundle-like α’-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities. Nanoscale 8:81975–81986

    Google Scholar 

  22. Ma Y, Ji S, Zhou H, Zhang S, Li R, Zhu J, Li W, Guo H, Jin P (2015) Synthesis of novel ammonium vanadium bronze (NH4)0.6V2O5 and its application in Li-ion battery. RSC Adv 5:90888–90894

    Article  Google Scholar 

  23. Wang H, Ren Y, Wang W, Huang X, Huang K, Wang Y, Liu S (2012) NH4V3O8 nanorod as a high performance cathode material for rechargeable Li-ion batteries. J Power Sources 199:315–321

    Article  Google Scholar 

  24. Cao SS, Huang JF, Xu ZW, Li JY, Ouyang HB, Cao LY, Zheng L (2015) Influence of microwave heating on the structure and electrochemical property of NH4V3O8 cathode material for lithium ion batteries. Ceram Int 41:6747–6752

    Article  Google Scholar 

  25. Wang H, Huang K, Liu S, Huang C, Wang W, Ren Y (2011) Electrochemical property of NH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal method. J Power Sour 196:788–792

    Article  Google Scholar 

  26. Zhang KF, Zhang GQ, Liu X, Su ZX, Li HL (2006) Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J Power Sour 157:528–532

    Article  Google Scholar 

  27. Park HK, Kim G (2010) Ammonium hexavanadate nanorods prepared by homogeneous precipitation using urea as cathodes for lithium batteries. Solid State Ionics 181:311–314

    Article  Google Scholar 

  28. Wang H, Huang K, Huang C, Liu S, Ren Y, Huang X (2011) (NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J Power Sour 196:5645–5650

    Article  Google Scholar 

  29. Abbood HA, Peng H, Gao X, Tan B, Huang K (2012) Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product. Chem Eng J 209:245–254

    Article  Google Scholar 

  30. Liu PC, Zhu KJ, Gao YF, Luo HJ, Lu L (2017) Recent progress in the applications of vanadium-based oxides on energy storage: from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication. Adv Energy Mater. doi:10.1002/aenm.201700547

    Google Scholar 

  31. Liu PC, Xu Y, Zhu KJ, Bian K, Wang J, Sun X, Gao YF, Luo HJ, Lu L (2013) Ultrathin VO2 nanosheets self-assembled into 3D micro/nano-structured hierarchical porous sponge-like micro-bundles for long-life and high-rate Li-Ion batteries. J Mater Chem A 5:8307–8318

    Article  Google Scholar 

  32. Fei HL, Liu M, Zhou HJ, Sun PC, Ding DT, Chen TH (2009) Synthesis of V2O5 micro-architectures via in situ generation of single-crystalline nanoparticles. Solid State Sci 11:102–107

    Article  Google Scholar 

  33. Zedalis MS, Fine ME (1986) Precipitation And ostwald ripening in dilute Al Base-ZR-V Alloys. Metall Trans Phys Metall Mater Sci 17:2187–2198

    Article  Google Scholar 

  34. Voorhees PW (1985) The theory of ostwald ripening. J Stat Phys 38:231–252

    Article  Google Scholar 

  35. Prasannan A, Truong TL, Hong PD, Somanathan N (2011) Synthesis and characterization of “Hairy Urchin”-like polyaniline by using β-cyclodextrin as a template. Langmuir 27(2):766–773

    Article  Google Scholar 

  36. Mohanambe L, Vasudevan S (2005) Inclusion of ferrocene in a cyclodextrin-functionalized layered metal hydroxide: a new organometallic-organic-LDH nanohybrid. Inorg Chem 44:2128–2130

    Article  Google Scholar 

  37. Jin L, Liu Q, Sun ZY, Ni XY, Wei M (2010) Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Ind Eng Chem Res 49:11176–11181

    Article  Google Scholar 

  38. Yang J, Li ZH, Wang JL, Xiao QZ, Lei GT (2012) An exfoliated vanadium pentoxide nanoplatelet and its electrochemical properties for lithium-ion batteries. Funct Mater Lett 5:1250019–1250024

    Article  Google Scholar 

  39. Zhang S, Li Y, Wu C, Zheng F, Xie Y (2009) Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries. J Phys Chem C 113:15058–15067

    Article  Google Scholar 

  40. Zeng M, Yin H, Yu K (2012) Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem Eng J 188:64–70

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Graduate Research and Innovation Projects (CYS17087), the Ninth Undergraduate Science and Technology Innovation (Project 20162303008), the Fundamental Research Funds for the Central Universities (Project Number XDJK2016E001, for Innovation and Entrepreneurship Students), the Fundamental Research Funds for the Central Universities (Project Number XDJK2016C003) and the Foundation of Chongqing Municipal Education Commission (KJ1711292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, M., Shen, B. et al. Facile synthesis of mesoporous NH4V4O10 nanoflowers with high performance as cathode material for lithium battery. J Mater Sci 53, 2045–2053 (2018). https://doi.org/10.1007/s10853-017-1619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1619-z

Keywords

Navigation