Skip to main content
Log in

Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Facile and robust immobilization of metal nanoparticles onto porous supporting matrix is an important issue in heterogeneous catalysis. This study reports a facile procedure for the synthesis and immobilization of small catalytic active silver nanoparticles (AgNPs) on cellulose paper (CP), which possesses interconnected fibrous structure and can be employed as cost-effective supports. Amino groups were first introduced to CP, through a silane coupling technique, to provide stable anchoring centers for silver ions. Small-sized AgNPs without aggregation were facilely synthesized and stably immobilized onto the fiber surface of CP followed by NaBH4 reduction. The as-prepared AgNPs incorporating composites exhibited excellent catalytic activity for the reduction of 4-nitrophenol. The rate constant of the catalytic reaction was calculated to be 1.46 × 10−2 s−1. More importantly, these amino-modified paper-based composite catalysts can be easily recovered and reused for at least six cycles due to their enhanced mechanical and catalytic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chi Y, Zhao L, Lu X, An C, Guo W, Wu C-ML (2016) Effect of alloying on the stabilities and catalytic properties of Ag–Au bimetallic subnanoclusters: a theoretical investigation. J Mater Sci 51:5046–5060. doi:10.1007/s10853-016-9808-8

    Article  Google Scholar 

  2. Singha S, Kim D, Seo H, Cho SW, Ahn KH (2015) Fluorescence sensing systems for gold and silver species. Chem Soc Rev 44:4367–4399

    Article  Google Scholar 

  3. Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–10488

    Article  Google Scholar 

  4. Du Y, Jiang Q, Beziere N, Song L, Zhang Q, Peng D, Chi C, Yang X, Guo H, Diot G, Ntziachristos V, Ding B, Tian J (2016) DNA-nanostructure–gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv Mater 28:10000–10007

    Article  Google Scholar 

  5. Sun K-Q, Luo S-W, Xu N, Xu B-Q (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242

    Article  Google Scholar 

  6. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375

    Article  Google Scholar 

  7. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  Google Scholar 

  8. Jiang H-L, Akita T, Ishida T, Haruta M, Xu Q (2011) Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal–organic framework. J Am Chem Soc 133:1304–1306

    Article  Google Scholar 

  9. Adhikari B, Biswas A, Banerjee A (2012) Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels. ACS Appl Mater Interfaces 4:5472–5482

    Article  Google Scholar 

  10. Dandapat A, Jana D, De G (2011) Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic Cr VI to Cr III in aqueous solution. Appl Catal A Gen 396:34–39

    Article  Google Scholar 

  11. Liang M, Wang L, Su R, Qi W, Wang M, Yu Y, He Z (2013) Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catal Sci Technol 3:1910–1914

    Article  Google Scholar 

  12. Liang M, Wang LB, Liu X, Qi W, Su RX, Huang RL, Yu YJ, He ZM (2013) Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts. Nanotechnology 24:245601

    Article  Google Scholar 

  13. Xia WY, Li N, Li QY, Ye KH, Xu CW (2016) Au–NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci Rep 6:23398

    Article  Google Scholar 

  14. Luo J, Zhang N, Lai J, Liu R, Liu X (2015) Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. J Hazard Mater 300:615–623

    Article  Google Scholar 

  15. Liang Y, Lin C, Guan J, Li Y (2017) Silver nanoparticle-immobilized porous POM/PLLA nanofibrous membranes: efficient catalysts for reduction of 4-nitroaniline. RSC Adv 7:7460–7468

    Article  Google Scholar 

  16. Dong BH, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1:797–803

    Article  Google Scholar 

  17. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  Google Scholar 

  18. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  Google Scholar 

  19. Li S-M, Jia N, Ma M-G, Zhang Z, Liu Q-H, Sun R-C (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    Article  Google Scholar 

  20. Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726

    Article  Google Scholar 

  21. Johnston JH, Nilsson T (2012) Nanogold and nanosilver composites with lignin-containing cellulose fibres. J Mater Sci 47:1103–1112. doi:10.1007/s10853-011-5882-0

    Article  Google Scholar 

  22. Wan C, Jiao Y, Sun Q, Li J (2016) Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polym Compos 37:1137–1142

    Article  Google Scholar 

  23. d’Halluin M, Rull-Barrull J, Bretel G, Labrugère C, Le Grognec E, Felpin F-X (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973

    Article  Google Scholar 

  24. Ngo YH, Li D, Simon GP, Garnier G (2011) Paper surfaces functionalized by nanoparticles. Adv Colloid Interface 163:23–38

    Article  Google Scholar 

  25. Li S-X, Lin X, Zheng F-Y, Liang W, Zhong Y, Cai J (2014) Constituting fully integrated visual analysis system for Cu(II) on TiO2/cellulose paper. Anal Chem 86:7079–7083

    Article  Google Scholar 

  26. Liu L, Zhao Y, Chen Q, Shi X, Shen M (2015) The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications. RSC Adv 5:104239–104244

    Article  Google Scholar 

  27. Liang M, Su R, Qi W, Yu Y, Wang L, He Z (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639–1647. doi:10.1007/s10853-013-7847-y

    Article  Google Scholar 

  28. Jin L, Bai R (2002) Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18:9765–9770

    Article  Google Scholar 

  29. Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21:9356–9361

    Article  Google Scholar 

  30. Liang M, Su R, Huang R, Qi W, Yu Y, Wang L, He Z (2014) Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl Mater Interfaces 6:4638–4649

    Article  Google Scholar 

  31. Koga H, Kitaoka T, Isogai A (2012) Paper-immobilized enzyme as a green microstructured catalyst. J Mater Chem 22:11591–11597

    Article  Google Scholar 

  32. Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, ReiVilar M (2010) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26:1996–2001

    Article  Google Scholar 

  33. Liang M, Su R, Qi W, Zhang Y, Huang R, Yu Y, Wang L, He Z (2014) Reduction of hexavalent chromium using recyclable Pt/Pd nanoparticles immobilized on procyanidin-grafted eggshell membrane. Ind Eng Chem Res 53:13635–13643

    Article  Google Scholar 

  34. Zhang J, Zhang Y, Chen Y, Du L, Zhang B, Zhang H, Liu J, Wang K (2012) Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles. Ind Eng Chem Res 51:3081–3090

    Article  Google Scholar 

  35. Q-l Lu, X-y Li, Tang L-r Lu, B-l Huang B (2015) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204

    Article  Google Scholar 

  36. Cao J, Sun X, Zhang X, Lu C (2016) Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications. Int J Biol Macromol 92:167–173

    Article  Google Scholar 

  37. Jiang Y, Wang W, Li X, Wang X, Zhou J, Mu X (2013) Enzyme-mimetic catalyst-modified nanoporous SiO2–cellulose hybrid composites with high specific surface area for rapid H2O2 detection. ACS Appl Mater Interfaces 5:1913–1916

    Article  Google Scholar 

  38. Lam E, Hrapovic S, Majid E, Chong JH, Luong JHT (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997–1002

    Article  Google Scholar 

  39. Gao Y, Zhao S, Zhang G, Deng L, Li J, Sun R, Li L, Wong C-P (2015) In situ assembly of dispersed Ag nanoparticles on hierarchically porous organosilica microspheres for controllable reduction of 4-nitrophenol. J Mater Sci 50:3399–3408. doi:10.1007/s10853-015-8898-z

    Article  Google Scholar 

  40. Bao Z, Yuan Y, Leng C, Li L, Zhao K, Sun Z (2017) One-pot synthesis of noble metal/zinc oxide composites with controllable morphology and high catalytic performance. ACS Appl Mater Interfaces 9:16417–16425

    Article  Google Scholar 

  41. Zeng X, Wang Q, Wang H, Yang Y (2017) Catalytically active silver nanoparticles loaded in the lumen of halloysite nanotubes via electrostatic interactions. J Mater Sci 52:8391–8400. doi:10.1007/s10853-017-1073-y

    Article  Google Scholar 

  42. Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A (2016) Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci 6:681–689

    Article  Google Scholar 

  43. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Scientific Research Projects of Henan Province Universities (No. 17B550006), the Doctoral Research Foundation (No. 2014BSJJ067) and the Graduate’s Scientific Research Foundation of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Liang or Jianmin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information

Thickness and tensile strength of untreated paper, NH2-modified paper and AgNPs@ NH2-paper, and representative TEM image of AgNPs supported on untreated CP and the corresponding size distribution histogram of AgNPs. (DOC 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Zhang, G., Feng, Y. et al. Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. J Mater Sci 53, 1568–1579 (2018). https://doi.org/10.1007/s10853-017-1610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1610-8

Keywords

Navigation