Skip to main content
Log in

Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Quercetin/gamma-cyclodextrin inclusion complex (quercetin/γ-CD-IC)-encapsulated electrospun zein nanofibers were designed as a quick and an efficient antioxidant nanofibrous material via electrospinning. Structural and thermal analyses along with the solubility enhancement as observed in phase-solubility diagram support the successful formation of the inclusion complexation between quercetin and γ-CD. The molar ratio of quercetin and γ-CD was found 1:1 in quercetin/γ-CD-IC which was confirmed with experimental (phase solubility and 1H-NMR) and computational modeling studies. Computational modeling was also useful to indicate that B orientation is more favorable when quercetin is forming host–guest inclusion complexation with γ-CD from the narrow rim. This result was also consistent with the calculations of the experimental studies performed by 1H-NMR. The successful electrospinning of zein nanofiber encapsulating quercetin/γ-CD-IC (zein-quercetin/γ-CD-IC-NF) yielded bead-free nanofiber morphology having 750 ± 255 nm fiber diameter. For comparative studies, pristine zein nanofibers (zein-NF, 695 ± 290 nm) and zein nanofibers encapsulating quercetin only (zein-quercetin-NF, 750 ± 310 nm) were also electrospun. The antioxidant (AO) characteristics of zein-quercetin/γ-CD-IC-NF were studied by the concentration-dependent AO activity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A (2015) Improved antioxidant capacity of quercetin and ferulic acid during in vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341

    Article  Google Scholar 

  2. Vashisth P, Nikhil K, Pemmaraju SC, Pruthi PA, Mallick V, Singh H, Patel A, Mishra NC, Singh RP, Pruthi V (2013) Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J Bioact Compat Polym 28(6):652–665

    Article  Google Scholar 

  3. Xing ZC, Meng W, Yuan J, Moon S, Jeong Y, Kang IK (2012) In vitro assessment of antibacterial activity and cytocompatibility of quercetin-containing PLGA nanofibrous scaffolds for tissue engineering. J Nanomater 202608, 7

  4. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754

    Article  Google Scholar 

  5. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98(5):1875–1918

    Article  Google Scholar 

  6. Li Z, Wang M, Wang F, Gu Z, Du G, Wu J, Chen J (2007) γ-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77(2):245–255

    Article  Google Scholar 

  7. Bergonzi MC, Bilia AR, Di Bari L, Mazzi G, Vincieri FF (2007) Studies on the interactions between some flavonols and cyclodextrins. Bioorg Med Chem Lett 17(21):5744–5748

    Article  Google Scholar 

  8. Koontz JL, Marcy JE, O’Keefe SF, Duncan SE (2009) Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants α-tocopherol and quercetin. J Agric Food Chem 57(4):1162–1171

    Article  Google Scholar 

  9. Carlotti ME, Sapino S, Ugazio E, Caron G (2011) On the complexation of quercetin with methyl-β-cyclodextrin: photostability and antioxidant studies. J Incl Phenom Macrocycl Chem 70(1–2):81–90

    Article  Google Scholar 

  10. Zheng Y, Haworth IS, Zuo Z, Chow MS, Chow AH (2005) Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. J Pharm Sci 94(5):1079–1089

    Article  Google Scholar 

  11. Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem 197:864–871

    Article  Google Scholar 

  12. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  Google Scholar 

  13. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  Google Scholar 

  14. Uyar T, Kny E (eds) (2017) Electrospun materials for tissue engineering and biomedical applications: research, design and commercialization, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  15. Celebioglu A, Kayaci-Senirmak F, Ipek S, Durgun E, Uyar T (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7(7):3141–3153

    Article  Google Scholar 

  16. Uyar T, Hacaloglu J, Besenbacher F (2011) Electrospun polyethylene oxide (PEO) nanofibers containing cyclodextrin inclusion complex. J Nanosci Nanotechnol 11(5):3949–3958

    Article  Google Scholar 

  17. Li XY, Shi CJ, Yu DG, Liao YZ, Wang X (2014) Electrospun quercetin-loaded zein nanoribbons. Bio Med Mater Eng 24(6):2015–2023

    Google Scholar 

  18. Thipkaew C, Wattanathorn J, Muchimapura S (2017) Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes. BioMed Res Int 2017493, 12

  19. Li XY, Li YC, Yu DG, Liao YZ, Wang X (2013) Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int J Mol Sci 14(11):21647–21659

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  22. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  Google Scholar 

  24. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6686

    Article  Google Scholar 

  25. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  Google Scholar 

  26. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  27. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58(3):380–388

    Article  Google Scholar 

  28. Fattebert JL, Gygi F (2003) First-principles molecular dynamics simulations in a continuum solvent. Int J Quant Chem 93(2):139–147

    Article  Google Scholar 

  29. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102–064120

    Article  Google Scholar 

  30. Petrosyan SA, Rigos AA, Arias TA (2005) Joint density-functional theory: ab initio study of Cr2O3 surface chemistry in solution. J Phys Chem B 109(32):15436–15444

    Article  Google Scholar 

  31. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140(8):084106–084108

    Article  Google Scholar 

  32. Tang P, Li S, Wang L, Yang H, Yan J, Li H (2015) Inclusion complexes of chlorzoxazone with β-and hydroxypropyl-β-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym 131:297–305

    Article  Google Scholar 

  33. Borghetti GS, Lula IS, Sinisterra RD, Bassani VL (2009) Quercetin/β-Cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech 10(1):235–242

    Article  Google Scholar 

  34. Ali S, Khatri Z, Oh KW, Kim IS, Kim SH (2014) Zein/cellulose acetate hybrid nanofibers: electrospinning and characterization. Macromol Res 22(9):971–977

    Article  Google Scholar 

  35. Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T (2017) Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 233:117–124

    Article  Google Scholar 

  36. Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid. Mater Sci Eng, C 63:231–239

    Article  Google Scholar 

  37. Uyar T, Hunt MA, Gracz HS, Tonelli AE (2006) Crystalline cyclodextrin inclusion compounds formed with aromatic guests: Guest-dependent stoichiometries and hydration-sensitive crystal structures. Cryst Growth Des 6:1113–1119

    Article  Google Scholar 

  38. Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431

    Article  Google Scholar 

  39. Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27(10):6218–6226

    Article  Google Scholar 

  40. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, Quek SY (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chem 136(2):1013–1021

    Article  Google Scholar 

  41. Uyar T, Besenbacher F (2008) Electrospinning of uniform polystyrene fibers: the effect of solvent conductivity. Polymer 49(24):5336–5343

    Article  Google Scholar 

  42. Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Uyar acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK)-Turkey (Project # 111M459) for funding this research. Dr. Uyar and Dr. Durgun acknowledge The Turkish Academy of Sciences-Outstanding Young Scientists Award Program (TUBA-GEBIP) for partial funding of the research. Z. Aytac thanks to TUBITAK-BIDEB and TUBITAK (project # 111M459) for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Uyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytac, Z., Ipek, S., Durgun, E. et al. Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. J Mater Sci 53, 1527–1539 (2018). https://doi.org/10.1007/s10853-017-1580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1580-x

Keywords

Navigation