Skip to main content
Log in

Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Evolution of \(\omega \) phase during heating of metastable \(\beta \) titanium alloy Ti–15Mo was investigated in situ during heating by electrical resistance measurements and accompanied by transmission electron microscopy. Different heating rates were employed aiming to determine kinetics of occurring phase transformations. Sharp change of temperature dependence of electrical resistance caused by complete dissolution of \(\omega \) phase was observed at 560 \(^{\circ }\hbox {C}\) independently of heating rate. Majority of \(\omega _{\mathrm{iso}}\) particles revert back to \(\beta \) phase at 560 \(^{\circ }\hbox {C}\); therefore, they are not direct precursors of \(\alpha \) precipitation during continuous heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lütjering G, Williams JC (2007) Titanium. Engineering materials, processes. Springer, Berlin, pp 1–39. doi:10.1007/978-3-540-73036-1

    Google Scholar 

  2. Maeshima T, Nishida M (2004) Shape memory and mechanical properties of biomedical Ti–Sc–Mo alloys. Mater Trans 45(4):1101–1105. doi:10.2320/matertrans.45.1101

    Article  Google Scholar 

  3. Duraccio D, Mussano F, Faga MG (2015) Biomaterials for dental implants: current and future trends. J Mater Sci 50(14):4779–4812. doi:10.1007/s10853-015-9056-3

    Article  Google Scholar 

  4. Duerig TW, Williams JC (1984) In: Boyer RR, Rosenberg HW (eds) Beta-Titanium Alloys in the 1980’s. The Metallurgical Society of AIME, pp 19–69

  5. Wang CH, Yang CD, Liu M, Li X, Hu PF, Russell AM, Cao GH (2016) Martensitic microstructures and mechanical properties of as-quenched metastable \(\beta \)-type Ti–Mo alloys. J Mater Sci 51(14):6886–6896. doi:10.1007/s10853-016-9976-6

    Article  Google Scholar 

  6. Duerig TW, Albrecht J, Richter D, Fischer P (1982) Formation and reversion of stress induced martensite in Ti–10V–2Fe–3Al. Acta Metall 30(12):2161–2172. doi:10.1016/0001-6160(82)90137-7

    Article  Google Scholar 

  7. Tang X, Ahmed T, Rack HJ (2000) Phase transformations in Ti–Nb–Ta and Ti–Nb–Ta–Zr alloys. J Mater Sci 35(7):1805–1811. doi:10.1023/A:1004792922155

    Article  Google Scholar 

  8. Frost PD, Parris WM, Hirsch LL, Doig JR, Schwartz CM (1954) Isothermal transformation of titanium–chromium alloys. Trans Am Soc Met 46:231

    Google Scholar 

  9. Zheng Y, Williams RE, Sosa JM, Alam T, Wang Y, Banerjee R, Fraser HL (2016) The indirect influence of the \(\omega \) phase on the degree of refinement of distributions of the \(\alpha \) phase in metastable \(\beta \)-titanium alloys. Acta Mater 103:165–173. doi:10.1016/j.actamat.2015.09.053

    Article  Google Scholar 

  10. Zheng Y, Williams RE, Sosa JM, Wang Y, Banerjee R, Fraser HL (2016) The role of the \(\omega \) phase on the non-classical precipitation of the \(\alpha \) phase in metastable \(\beta \)-titanium alloys. Scripta Mater 111:81–84. doi:10.1016/j.scriptamat.2015.08.019

    Article  Google Scholar 

  11. Sikka SK, Vohra YK, Chidambaram R (1982) Omega phase in materials. Prog Mater Sci 27(3):245. doi:10.1016/0079-6425(82)90002-0

    Article  Google Scholar 

  12. Hickman BS (1969) The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci 4(6):554

    Article  Google Scholar 

  13. Banerjee S, Mukhopadhyay P (2007) Phase transformations: examples from titanium and zirconium alloys. No. 12 in Pergamon materials seriesv. Elsevier, Pergamon

    Google Scholar 

  14. Šmilauerová J, Harcuba P, Stráský J, Stráská J, Janeček M, Pospíšil J, Kužel R, Brunátová T, Holý V, Ilavský J (2014) Ordered array of \(\omega \) particles in \(\beta \)-Ti matrix studied by small-angle X-ray scattering. Acta Mater 81:71–82. doi:10.1016/j.actamat.2014.06.042

    Article  Google Scholar 

  15. Bagaryatskiy A, Yu I, Nosova G (1962) Phys Met Metallogr 13(3):92

    Google Scholar 

  16. De Fontaine D, Paton NE, Williams JC (1971) The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Metall 19(11):1153. doi:10.1016/0001-6160(71)90047-2

    Article  Google Scholar 

  17. Zháňal P, Harcuba P, Šmilauerová J, Stráský J, Janeček M, Smola B, Hájek M (2015) Phase transformations in Ti–15Mo investigated by in situ electrical resistance. Acta Phys Pol A 128(4):779. doi:10.12693/APhysPolA.128.779

    Article  Google Scholar 

  18. Nejezchlebová J, Janovská M, Seiner H, Sedlák P, Landa M, Šmilauerová J, Stráský J, Harcuba P, Janeček M (2016) The effect of athermal and isothermal \(\omega \) phase particles on elasticity of \(\beta \)-Ti single crystals. Acta Mater 110:185–191. doi:10.1016/j.actamat.2016.03.033

    Article  Google Scholar 

  19. Froes F, Staff AI (2015) Titanium: physical metallurgy processing and applications. ASM International, New York

    Google Scholar 

  20. Šmilauerová J, Harcuba P, Pospíšil J, Matěj Z, Holý V (2013) Growth of \(\omega \) inclusions in Ti alloys: an X-ray diffraction study. Acta Mater 61(17):6635–6645. doi:10.1016/j.actamat.2013.07.059

    Article  Google Scholar 

  21. Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of \(\omega \)-phase precipitation on \(\beta \rightarrow \alpha \), \(\alpha \)” transformations in a metastable \(\beta \) titanium alloy. Mater Sci Eng A 312(1):182. doi:10.1016/S0921-5093(00)01891-8

    Article  Google Scholar 

  22. Williams JC, Blackburn MJ (1969) The influence of Misfit on the morphology and stability of the omega phase in titanium–transition metal alloys. Trans Met Soc AIME 245:2352–2355

    Google Scholar 

  23. Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) \(\omega \)-Assisted nucleation and growth of \(\alpha \) precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe \(\beta \) titanium alloy. Acta Mater 57(7):2136. doi:10.1016/j.actamat.2009.01.007

    Article  Google Scholar 

  24. Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal \(\omega \) and \(\omega \)-assisted \(\alpha \) in near \(\beta \)-Ti alloys. Acta Mater 106:353–366. doi:10.1016/j.actamat.2015.12.046

    Article  Google Scholar 

  25. Prima F, Vermaut P, Texier G, Ansel D, Gloriant T (2006) Evidence of \(\alpha \)-nanophase heterogeneous nucleation from \(\omega \) particles in a \(\beta \)-metastable Ti-based alloy by high-resolution electron microscopy. Scripta Mater 54(4):645. doi:10.1016/j.scriptamat.2005.10.024

    Article  Google Scholar 

  26. Ho JC, Collings EW (1972) Anomalous electrical resistivity in titanium–molybdenum alloys. Phys Rev B 6(10):3727

    Article  Google Scholar 

  27. Luhman TS, Taggart R, Polonis DH (1968) A resistance anomaly in beta stabilized Ti–Cr alloys. Scr Metall 2(3):169. doi:10.1016/0036-9748(68)90219-6

    Article  Google Scholar 

  28. Hake RR, Leslie DH, Berlincourt TG (1961) Electrical resistivity, Hall effect and superconductivity of some b.c.c. titanium–molybdenum alloys. J Phys Chem Solids 20(3):177. doi:10.1016/0022-3697(61)90002-6

    Article  Google Scholar 

  29. Komatsu SY, Ikeda M, Sugimoto T, Kamei K, Maesaki O, Kojima MA (1996) Aging behaviour of Ti15Mo5Zr and Ti15Mo5Zr3Al alloy up to 573 K. Mater Sci Eng A 213(1—-2):61–65. doi:10.1016/0921-5093(96)10228-8

    Article  Google Scholar 

  30. Sun F, Prima F, Gloriant T (2010) High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor. Mater Sci Eng A 527(16–17):4262–4269. doi:10.1016/j.msea.2010.03.044

    Article  Google Scholar 

  31. Hill MA, Polonis DH (1987) Influence of beta phase decomposition on the temperature coefficient of resistivity of titanium alloys. J Mater Sci 22(6):2181–2184. doi:10.1007/BF01132957

    Article  Google Scholar 

  32. Yoshida S, Tsuya Y (1956) The temperature dependence of the electrical resistivity of the \(\beta \)-phase titanium–molybdenum alloys. J Phys Soc Jpn 11(11):1206. doi:10.1143/JPSJ.11.1206

    Article  Google Scholar 

  33. Prima F, Debuigne J, Boliveau M, Ansel D (2000) Control of omega phase volume fraction precipitated in a beta titanium alloy: development of an experimental method. J Mater Sci Lett 19(24):2219

    Article  Google Scholar 

  34. Hájek M, Veselý J, Cieslar M (2007) Precision of electrical resistivity measurements. Mater Sci Eng A 462(1–2):339–342. doi:10.1016/j.msea.2006.01.175

    Article  Google Scholar 

  35. Gloriant T, Texier G, Sun F, Thibon I, Prima F, Soubeyroux J (2008) Characterization of nanophase precipitation in a metastable \(\beta \) titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction. Scripta Mater 58(4):271. doi:10.1016/j.scriptamat.2007.10.007

    Article  Google Scholar 

  36. Settefrati A, Aeby-Gautier E, Dehmas M, Geandier G, Appolaire B, Audion S, Delfosse J (2011) Precipitation in a near beta titanium alloy on ageing: influence of heating rate and chemical composition of the beta-metastable phase. Solid State Phenom 172–174:760–765. doi:10.4028/www.scientific.net/SSP.172-174.760

    Article  Google Scholar 

  37. Boeckels H (2012) Phase transformations in titanium–molybdenum–oxygen. Ph.D. thesis, Clemson University

  38. Barriobero-Vila P, Requena G, Warchomicka F, Stark A, Schell N, Buslaps T (2015) Phase transformation kinetics during continuous heating of a \(\beta \)-quenched Ti–10V–2Fe–3Al alloy. J Mater Sci 50(3):1412–1426. doi:10.1007/s10853-014-8701-6

    Article  Google Scholar 

  39. Donachie M (1988) Titanium: a technical guide. AMS International, New York

    Google Scholar 

  40. Gemelli E, Camargo NHA (2007) Oxidation kinetics of commercially pure titanium. Matéria (Rio de Janeiro) 12(3):525–531. doi:10.1590/S1517-70762007000300014

    Article  Google Scholar 

  41. Prima F, Vermaut P, Thibon I, Ansel D, Debuigne J, Gloriant T (2002) Nanostructured metastable \(\beta \)-titanium based alloy. J Metastab Nanocrystal Mater 13:307. doi:10.4028/www.scientific.net/JMNM.13.307

    Article  Google Scholar 

  42. Takemoto Y, Hida M, Sakakibara A (1993) Mechanism of \(\omega \rightarrow \alpha \) transformation in \(\beta \)-Ti alloy. J Jpn Inst Met 57(3):261–267

    Article  Google Scholar 

  43. Devaraj A, Nag S, Srinivasan R, Williams R, Banerjee S, Banerjee R, Fraser H (2012) Experimental evidence of concurrent compositional and structural instabilities leading to \(\omega \) precipitation in titanium–molybdenum alloys. Acta Mater 60(2):596. doi:10.1016/j.actamat.2011.10.008

    Article  Google Scholar 

  44. Schryvers D, Tanner L (1990) High resolution electron microscopy observations of athermal omega phase in Ti–Mo alloys. Mater Sci Forum 56–58:329. doi:10.4028/www.scientific.net/MSF.56-58.329

    Article  Google Scholar 

  45. Zháňal P, Harcuba P, Janeček M, Smilauerová J, Veselý J, Smola B, Zimina M (2016) In: Venkatesh V, Pilchak AL, Allison JE, Ankem S, Boyer R, Christodoulou J, Fraser HL, Imam MA, Kosaka Y, Rack HJ, Chatterjee A, Woodfield A (eds) Proceedings of the 13th world conference on titanium, TMS (The Minerals, Metals & Materials Society), pp 431–436

  46. Furuhara T, Makino T, Idei Y, Ishigaki H, Takada A, Maki T (1998) Morphology and crystallography of \(\alpha \) precipitates in \(\beta \) Ti–Mo binary alloys. Mater Trans JIM 39(1):31–39. doi:10.2320/matertrans1989.39.31

    Article  Google Scholar 

  47. Zheng Y, Williams REA, Wang D, Shi R, Nag S, Kami P, Sosa JM, Banerjee R, Wang Y, Fraser HL (2016) Role of \(\omega \) phase in the formation of extremely refined intragranular \(\alpha \) precipitates in metastable \(\beta \)-titanium alloys. Acta Mater 103:850–858. doi:10.1016/j.actamat.2015.11.020

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Czech Science Foundation under the Project 16-12598S. Partial support by the project “Nanomaterials centre for advanced applications”, Project No. CZ.02.1.01/0.0/0.0/15 003/0000485, financed by ERDF is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zháňal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zháňal, P., Harcuba, P., Hájek, M. et al. Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo. J Mater Sci 53, 837–845 (2018). https://doi.org/10.1007/s10853-017-1519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1519-2

Keywords

Navigation