Skip to main content
Log in

Effect of martensitic structure on the magnetic field controlled damping effect in a Ni–Fe–Mn–Ga ferromagnetic shape memory alloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the effect of martensitic structure on the magnetic field controlled damping effect in a Ni53Fe2Mn20Ga25 polycrystalline ferromagnetic shape memory alloy, which undergoes the structure transitions in the sequence of parent phase → seven-layer modulated (14M) martensite → non-modulated tetragonal martensite. We found that large increase in damping capacity by applying magnetic field appears in the 14M martensite, but insignificant increase is observed in the non-modulated tetragonal martensite. This demonstrates that the magnetic field controlled damping effect is strongly dependent on the martensitic structure. It is proposed that magnetic field controlled damping effect relies on the twinning stress and magnetic stress of martensite. Large magnetic field controlled damping effect is expected to appear in the martensitic structure with large magnetocrystalline anisotropy and small twin shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Schaller R, Fantozzi G, Gremaud G (eds) (2001) Mechanical spectroscopy Q−1 2001. Trans Tech Publications, Zurich

    Google Scholar 

  2. Yin F (2003) Damping behavior and relevant physical mechanisms of high damping alloys. Recent Res Dev Mater Sci 4:213–233

    Google Scholar 

  3. Yoshida I, Monma D, Iino K, Otsuka K, Asai M, Tsuzuki H (2003) Damping properties of Ti50Ni50−xCux alloys utilizing martensitic transformation. J Alloys Compd 355:79–84

    Article  Google Scholar 

  4. Fan G, Zhou Y, Otsuka K, Ren X (2006) Ultrahigh damping in R-phase state of Ti–Ni–Fe alloy. Appl Phys Lett 89:161902-1–161902-3

    Google Scholar 

  5. Iwasaki K, Hasiguti R (1987) Effect of Preannealings on the temperature spectra of internal friction and shear modulus of Ti–51Ni. Trans JIM 28:363–367

    Article  Google Scholar 

  6. Yin F, Nagai K, Watanabe K, Kawahara K (2003) The damping behavior of Ni added Mn–Cu damping alloys. Mater Trans 44:1671–1674

    Article  Google Scholar 

  7. Chernenko VA, Segui C, Cesari E, Pons J, Kokorin VV (1998) Sequence of martensitic transformations in Ni–Mn–Ga alloys. Phys Rev B 57:2659–2662

    Article  Google Scholar 

  8. Wang WH, Liu GD, Wu GH (2006) Magnetically controlled high damping in ferromagnetic Ni52Mn24Ga24 single crystal. Appl Phys Lett 89:101911-1–101911-3

    Google Scholar 

  9. Sozinov A, Likhachev AA, Ullakko K (2001) Magnetic and magnetomechanical properties of Ni–Mn–Ga alloys with easy axis and easy plane of magnetization. Proc SPIE 4333:189–196

    Article  Google Scholar 

  10. Sozinov A, Likhachev AA, Ullakko K (2002) Crystal structures and magnetic anisotropy properties of Ni–Mn–Ga martensitic phases with giant magnetic-field-induced strain. IEEE Trans Magn 38:2814–2816

    Article  Google Scholar 

  11. Heczko O, Lanska N, Soderberg O, Ullakko K (2002) Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys. J Magn Magn Mater 242–245:1446–1449

    Article  Google Scholar 

  12. Sozinov A, Lanska N, Soroka A, Zou W (2013) 12% magnetic field-induced strain in Ni–Mn–Ga-based non-modulated martensite. Appl Phys Lett 102:021902-1–021902-4

    Article  Google Scholar 

  13. Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett 80:1746–1748

    Article  Google Scholar 

  14. Gaitzsch U, Pötschke M, Roth S, Rellinghaus B, Schultz L (2009) A 1% magnetostrain in polycrystalline 5 M Ni–Mn–Ga. Acta Mater 57:365–370

    Article  Google Scholar 

  15. Biswas C, Rawat R, Barman SR (2005) Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1−xGa. Appl Phys Lett 86:202508-1–202508-3

    Google Scholar 

  16. Banik S, Rawat R, Mukhopadhyay PK, Ahuja BL, Chakrabarti A, Paulose PL, Singh S, Singh AK, Pandey D, Barman SR (2008) Magnetoresistance behavior of ferromagnetic shape memory alloy Ni1.75Mn1.25Ga. Phys Rev B 77:224417-1–224417-8

    Article  Google Scholar 

  17. Planes A, Mañosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21:233201-1–233201-29

    Article  Google Scholar 

  18. Xuan HC, Xie KX, Wang DH, Han ZD, Zhang CL, Gu BX, Du YW (2008) Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl Phys Lett 92:242506-1–242506-3

    Google Scholar 

  19. Recarte V, Pérez-Landazábal JI, Gómez-Polo C, Cesari E, Dutkiewicz J (2006) Magnetocaloric effect in Ni–Fe–Ga shape memory alloys. Appl Phys Lett 88:132503-1–132503-3

    Article  Google Scholar 

  20. Fan G, Otsuka K, Ren X, Yin F (2008) Twofold role of dislocations in the relaxation behavior of Ti–Ni martensite. Acta Mater 56:632–641

    Article  Google Scholar 

  21. Sapozhnikov K, Golyandin S, Kustov S, Schaller R, Van Humbeeck J (2006) Anelasticity of B19′ martensitic phase in Ni–Ti and Ni–Ti–Cu alloys. Mater Sci Eng A 442:398–403

    Article  Google Scholar 

  22. Wang WH, Ren X, Wu GH (2006) Martensitic microstructure and its damping behavior in Ni52Mn16Fe8Ga24 single crystals. Phys Rev B 73:092101-1–092101-4

    Google Scholar 

  23. Seguí C, Chernenko VA, Pons J, Cesari E, Khovailo V, Takagi T (2005) Low temperature-induced intermartensitic phase transformations in Ni–Mn–Ga single crystal. Acta Mater 53:111–120

    Article  Google Scholar 

  24. San Juan J, Nó ML (2003) Damping behavior during martensitic transformation in shape memory alloys. J. Alloys Compd 355:65–71

    Article  Google Scholar 

  25. Aaltio I, Lahelin M, Söderberg O, Heczko O, Löfgren B, Ge Y, Seppälä J, Hannula SP (2008) Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mater Sci Eng A 481–482:314–317

    Article  Google Scholar 

  26. Heczko O (2005) Magnetic shape memory effect and magnetization reversal. J Magn Magn Mater 290–291:787–794

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by National Natural Science Foundation of China (Grant No. 51471127, 51431007, 51371134 and 51207121), National Basic Research Program of China (Grant Nos. 2012CB619401), Program for Young Scientific New-star in Shaanxi Province of China (No. 2014KJXX-35), Program for New Century Excellent Talents (No. NCET-12-0458), the Fundamental Research Funds for Central Universities of China, Program for Key Science and Technology Innovative Research Team of Shaanxi Province (No. 2013KCT-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, C., Wu, H. et al. Effect of martensitic structure on the magnetic field controlled damping effect in a Ni–Fe–Mn–Ga ferromagnetic shape memory alloy. J Mater Sci 52, 12854–12860 (2017). https://doi.org/10.1007/s10853-017-1399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1399-5

Keywords

Navigation