Skip to main content
Log in

High thermoelectric performance of Bi1−x K x CuSeO prepared by combustion synthesis

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of K-doped Bi1−x K x CuSeO (0 ≤ x ≤ 0.10) compounds were prepared by combustion synthesis combined with spark plasma sintering method. Phase composition and microstructure analysis indicate almost single BiCuSeO phase in low doping level, while phase separation appears in heavy doping level. The thermoelectric properties of the Bi1−x K x CuSeO compounds have been measured in the temperature range of 323–823 K. The electrical conductivity is greatly enhanced by almost three times from 8.70 to 26.2 S/cm at 323 K by the substitution of Bi with K due to the large decrease of the activation energy. The overall thermal conductivity decreases significantly due to the strong point defect scattering by K doping and possibly enhanced interface scattering on the secondary phase. The maximum ZT reaches 0.6 at 823 K for the sample of x = 0.02, which is about 50% higher than that of the pristine sample. Our work offers a fast and more efficient approach for the fabrication of BiCuSeO-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Elsheikh MH, Shnawah DA, Sabri MFM et al (2014) A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev 30:337–355. doi:10.1016/j.rser.2013.10.027

    Article  Google Scholar 

  2. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461. doi:10.1126/scien-ce.1158899

    Article  Google Scholar 

  3. Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416):414–418. doi:10.1038/nature11439

    Article  Google Scholar 

  4. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114. doi:10.1038/nmat2090

    Article  Google Scholar 

  5. Pei Y, Shi X, LaLonde A, Wang H et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345):66–69. doi:10.1038/nature09996

    Article  Google Scholar 

  6. Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888):554–557. doi:10.1126/science.1159725

    Article  Google Scholar 

  7. Kim SI, Lee KH, Mun HA et al (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230):109–114. doi:10.1126/science.aaa4166

    Article  Google Scholar 

  8. Farooq MU, Gao Z, Butt S et al (2016) Enhanced thermoelectric transport properties of La0.98Sr0.02CoO3–BiCuSeO composite. J Electr Eng 4(2):52–57. doi:10.17265/2328-2223/2016.02.002

    Google Scholar 

  9. Farooq MU, Butt S, Mahmood A et al (2016) Pronounced effect of ZnTe nanoinclusions on thermoelectric properties of Cu2−x Se chalcogenides. Sci China Mater 59(2):135–143. doi:10.1007/s40843-016-0126-x

    Article  Google Scholar 

  10. Farooq MU, Butt S, Gao K et al (2016) Enhanced thermoelectric efficiency of Cu2−x Se–Cu2S composite by incorporating Cu2S nanoparticles. Ceram Int 42(7):8395–8401. doi:10.1016/j.ceramint.2016.02.055

    Article  Google Scholar 

  11. Kudman I (1972) Thermoelectric properties of p-type PbTe–PbSe alloys. J Mater Sci 7(9):1027–1029. doi:10.1007/BF00550066

    Article  Google Scholar 

  12. Kim SW, Kimura Y, Mishima Y (2004) Effect of partial la filling on high-temperature thermoelectric properties of IrSb3-based skutterudite compounds. J Electron Mater 33(10):1156–1160. doi:10.1007/s11664-004-0117-7

    Article  Google Scholar 

  13. Lee H, Vashaee D, Wang DZ et al (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107(9):094308. doi:10.1063/1.3388076

    Article  Google Scholar 

  14. Zhao LD, Lo SH, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377. doi:10.1038/nature13184

    Article  Google Scholar 

  15. Xu G, Funahashi R, Shikano M et al (2002) Thermoelectric properties of the Bi-and Na-substituted Ca3Co4O9 system. Appl Phys Lett 80(20):3760–3762. doi:10.1063/1.1480115

    Article  Google Scholar 

  16. Fujita K, Mochida T, Nakamura K (2001) High-temperature thermoelectric properties of NaxCoO2−δ single crystals. Jpn J Appl Phys 40(7):4644. doi:10.1143/JJAP.40.4644

    Article  Google Scholar 

  17. Liu J, Wang CL, Peng H et al (2012) Thermoelectric properties of Dy-doped SrTiO3 ceramics. J Electron Mater 41(11):3073–3076. doi:10.1007/s11664-012-2219-y

    Article  Google Scholar 

  18. Jood P, Mehta RJ, Zhang Y et al (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11(10):4337–4342. doi:10.1021/nl202439h

    Article  Google Scholar 

  19. Fergus JW (2012) Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 32(3):525–540. doi:10.1016/j.jeurceramsoc.2011.10.007

    Article  Google Scholar 

  20. Koumoto K, Funahashi R, Guilmeau E et al (2013) Thermoelectric ceramics for energy harvesting. J Am Ceram Soc 96(1):1–23. doi:10.1111/jace.12076

    Article  Google Scholar 

  21. Zhao LD, Berardan D, Pei YL et al (2010) Bi1−x Sr x CuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 97(9):092118. doi:10.1063/1.3485050

    Article  Google Scholar 

  22. Li J, Sui J, Barreteau C et al (2013) Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloy Compd 551:649–653. doi:10.1016/j.jallcom.2012.10.160

    Article  Google Scholar 

  23. Lan JL, Liu YC, Zhan B et al (2013) Enhanced Thermoelectric Properties of Pb-doped BiCuSeO Ceramics. Adv Mater 25(36):5086–5090. doi:10.1002/adma.201301675

    Article  Google Scholar 

  24. Lan JL, Zhan B, Liu YC et al (2013) Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett 102(12):123905. doi:10.1063/1.4799643

    Article  Google Scholar 

  25. Liu Y, Zhao LD, Liu Y et al (2011) Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc 133(50):20112–20115. doi:10.1021/ja2091195

    Article  Google Scholar 

  26. Liu Y, Zhao L D, Zhu Y et al (2016) Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater. doi:10.1002/aenm.201502423

  27. Pan L, Bérardan D, Zhao L et al (2013) Influence of Pb doping on the electrical transport properties of BiCuSeO. Appl Phys Lett 102(2):023902. doi:10.1063/1.4775593

    Article  Google Scholar 

  28. Pei YL, He J, Li JF et al (2013) High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater 5(5):e47. doi:10.1038/am.2013.15

    Article  Google Scholar 

  29. Sui J, Li J, He J et al (2013) Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci 6(10):2916–2920. doi:10.1039/C3EE41859F

    Article  Google Scholar 

  30. Ren GK, Butt S, Zeng CC et al (2015) Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides. J Electron Mater 44(6):1627–1631. doi:10.1007/s11664-014-3495-5

    Article  Google Scholar 

  31. Barreteau C, Bérardan D, Amzallag E et al (2012) Structural and electronic transport properties in Sr-doped BiCuSeO. Chem Mater 24(16):3168–3178. doi:10.1021/cm301492z

    Article  Google Scholar 

  32. Li F, Wei TR, Kang F et al (2013) Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A 1(38):11942–11949. doi:10.1039/C3TA11806A

    Article  Google Scholar 

  33. Li Z, Xiao C, Fan S et al (2015) Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc 137(20):6587–6593. doi:10.1021/jacs.5b01863

    Article  Google Scholar 

  34. Liu Y, Zhou Y, Lan J et al (2016) Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. J Alloy Compd 662:320–324. doi:10.1016/j.jallcom.2015.12.087

    Article  Google Scholar 

  35. Farooq MU, Butt S, Gao K et al (2017) Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site. J Alloy Compd 691:572–577. doi:10.1016/j.jallcom.2016.08.236

    Article  Google Scholar 

  36. Sun Lee D, An TH, Jeong M et al (2013) Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Appl Phys Lett 103(23):232110. doi:10.1063/1.4837475

    Article  Google Scholar 

  37. Li J, Sui J, Pei Y et al (2014) The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A 2(14):4903–4906. doi:10.1039/C3TA14532H

    Article  Google Scholar 

  38. Zhang M, Yang J, Jiang Q et al (2015) Multi-role of sodium doping in BiCuSeO on high thermoelectric performance. J Electron Mater 44(8):2849–2855. doi:10.1007/s11664-015-3700-1

    Article  Google Scholar 

  39. Farooq MU, Butt S, Gao K et al (2016) Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides. RSC Adv 6(40):33789–33797. doi:10.1039/C6RA01686C

    Article  Google Scholar 

  40. Liu YC, Liu JF, Zhang BP et al (2014) Thermoelectric properties of Ni doped P-type BiCuSeO oxyselenides. In: Key engineering materials, vol 602, pp 906–909. Trans Tech Publications. doi:10.4028/www.scientific.net/KEM.602-603.906

  41. Li J, Sui J, Pei Y et al (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5(9):8543–8547. doi:10.1039/c2ee22622g

    Article  Google Scholar 

  42. Feng D, Zheng F, Wu D et al (2016) Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy 27:167–174. doi:10.1016/j.nanoen.2016.07.003

    Article  Google Scholar 

  43. Merzhanov AG (2004) The chemistry of self-propagating high-temperature synthesis. J Mater Chem 14(12):1779–1786. doi:10.1039/B401358C

    Article  Google Scholar 

  44. Liang T, Su X, Yan Y et al (2014) Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J Mater Chem A 2(42):17914–17918. doi:10.1039/B401358C

    Article  Google Scholar 

  45. Su X, Fu F, Yan Y et al (2014) Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun 5:4908. doi:10.1038/ncomms5908

    Article  Google Scholar 

  46. Zheng G, Su X, Liang T et al (2015) High thermoelectric performance of mechanically robust n-type Bi2Te3−x Se x prepared by combustion synthesis. J Mater Chem A 3(12):6603–6613. doi:10.1039/C5TA00470E

    Article  Google Scholar 

  47. Li Y, Liu G, Li J et al (2016) Ultrafast one-step combustion synthesis and thermoelectric properties of In-doped Cu2SnSe3. Mater Chem Phys 177:398–404. doi:10.1016/j.matchemphys.2016.04.044

    Article  Google Scholar 

  48. Yang D, Su X, Yan Y et al (2016) Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1–x Pb x CuSeO. Chem Mater 28(13):4628–4640. doi:10.1021/acs.chemmater.6b01291

    Article  Google Scholar 

  49. Saleemi M, Toprak MS, Fiameni S et al (2013) Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si). J Mater Sci 48(5):1940–1946. doi:10.1007/s10853-012-6959-0

    Article  Google Scholar 

  50. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  51. Bosman AJ, Van Daal HJ (1970) Small-polaron versus band conduction in some transition-metal oxides. Adv Phys 19(77):1–117. doi:10.1080/00018737000101071

    Article  Google Scholar 

  52. Liu Y, Zheng Y, Zhan B et al (2015) Influence of Ag doping on thermoelectric properties of BiCuSeO. J Eur Ceram Soc 35(2):845–849. doi:10.1016/j.jeurceramsoc.2014.09.015

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NSF of China (51402010 and 51672155) and Natural Science Foundation of Jiangsu Province (No. BK20140270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Le Lan or Yuan-Hua Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, JL., Ma, W., Deng, C. et al. High thermoelectric performance of Bi1−x K x CuSeO prepared by combustion synthesis. J Mater Sci 52, 11569–11579 (2017). https://doi.org/10.1007/s10853-017-1323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1323-z

Keywords

Navigation