Skip to main content
Log in

Effect of the initial grain size and orientation on the formation of deformation twins in Ti-15Mo alloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effect of the grain size and orientation on the formation of deformation twins in Ti-15Mo alloy. For this material, cold rolling was carried out to achieve a 90% thickness reduction on the samples. In order to recrystallize the severely deformed alloy and to obtain two types of grain sizes, the alloys were then annealed at 900 °C for 1 and 30 min, respectively. After this work, electron backscattered diffraction was introduced to analyze grain boundary character distributions. As a result, the coarsened grains (average size ~154 μm) formed denser deformation twins relative to that of the finer grains (average size ~25 μm), which was attributed to the grain boundary constraint and orientation. These effects led to an enhancement of the strain-hardening constant of the alloy, which in turn resulted in a notable increase in the elongation without any significant decrease in the tensile strength. In this study, we systematically discussed the formation of twins in terms of grain size and Schmid factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15:141–168. doi:10.1016/j.cossms.2011.04.002

    Article  Google Scholar 

  2. Lai HJ, Wan CM (1989) The study of work hardening in Fe-Mn-Al-C alloys. J Mater Sci 24:2449–2453. doi:10.1007/bf01174510

    Article  Google Scholar 

  3. Kim TW, Kim YG (1993) Properties of austenitic Fe-25Mn-1Al-0.3C alloy for automotive structural applications. Mater Sci Eng A 160:13–15. doi:10.1016/0921-5093(93)90463-O

    Article  Google Scholar 

  4. Lee Y-K (2012) Microstructural evolution during plastic deformation of twinning-induced plasticity steels. Scr Mater 66:1002–1006. doi:10.1016/j.scriptamat.2011.12.016

    Article  Google Scholar 

  5. Kim J, Estrin Y, De Cooman BC (2013) Application of a dislocation density-based constitutive model to al-alloyed twip steel. Metall Materi Trans A 44:4168–4182. doi:10.1007/s11661-013-1771-2

    Article  Google Scholar 

  6. Cooman CB, Chen L, Kim SH, Estrin Y, Kim KS, Voswinckel H (2009) State-of-the-Science of High Manganese TWIP Steels for Automotive Applications. In: Haldar A, Suwas S, Bhattacharjee D (eds) Microstructure and texture in steels: and other materials. Springer, London

    Google Scholar 

  7. Fonstein N (2015) Advanced high strength sheet steels: physical metallurgy, design, processing, and properties. Springer, New York

    Book  Google Scholar 

  8. Banerjee D, Williams JC (2013) Perspectives on Titanium Science and Technology. Acta Mater 61:844–879. doi:10.1016/j.actamat.2012.10.043

    Article  Google Scholar 

  9. Sun QY, Song SJ, Zhu RH, Gu HC (2002) Toughening of titanium alloys by twinning and martensite transformation. J Mater Sci 37:2543–2547. doi:10.1023/a:1015456026919

    Article  Google Scholar 

  10. Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloys—an overview. Mater Sci Eng, A 243:46–65. doi:10.1016/S0921-5093(97)00783-1

    Article  Google Scholar 

  11. Takemoto Y, Shimizu I, Sakakibara A, Hida M, Mantani Y (2004) Tensile behavior and cold workability of Ti-Mo alloys. Mater Trans 45:1571–1576. doi:10.2320/matertrans.45.1571

    Article  Google Scholar 

  12. Min X, Chen X, Emura S, Tsuchiya K (2013) Mechanism of twinning-induced plasticity in β-type Ti–15Mo alloy. Scr Mater 69:393–396. doi:10.1016/j.scriptamat.2013.05.027

    Article  Google Scholar 

  13. Wang CH, Yang CD, Liu M et al (2016) Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti–Mo alloys. J Mater Sci 51:6886–6896. doi:10.1007/s10853-016-9976-6

    Article  Google Scholar 

  14. Carter G, Flower HM, Pennock GM, West DRF (1977) The deformation characteristics of metastable β -phase in a Ti-15 wt% Mo alloy. J Mater Sci 12:2149–2153. doi:10.1007/bf00552235

    Article  Google Scholar 

  15. Barbier D, Gey N, Bozzolo N, Allain S, Humbert M (2009) EBSD for analysing the twinning microstructure in fine-grained TWIP steels and its influence on work hardening. J Microsc 235:67–78. doi:10.1111/j.1365-2818.2009.03182.x

    Article  Google Scholar 

  16. Meng L, Yang P, Xie Q, Ding H, Tang Z (2007) Dependence of deformation twinning on grain orientation in compressed high manganese steels. Scr Mater 56:931–934. doi:10.1016/j.scriptamat.2007.02.028

    Article  Google Scholar 

  17. Yang P, Xie Q, Meng L, Ding H, Tang Z (2006) Dependence of deformation twinning on grain orientation in a high manganese steel. Scr Mater 55:629–631. doi:10.1016/j.scriptamat.2006.06.004

    Article  Google Scholar 

  18. Meyers MA, Vöhringer O, Lubarda VA (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039. doi:10.1016/S1359-6454(01)00300-7

    Article  Google Scholar 

  19. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093–5103. doi:10.1016/j.actamat.2004.07.015

    Article  Google Scholar 

  20. Ueji R, Tsuchida N, Terada D et al (2008) Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater 59:963–966. doi:10.1016/j.scriptamat.2008.06.050

    Article  Google Scholar 

  21. Ueji R, Tsuchida N, Harada K, Takaki K, Fujii H (2015) Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure. IOP Conf Seri Mater Sci Eng 89:012045

    Article  Google Scholar 

  22. Barnett MR (2008) A rationale for the strong dependence of mechanical twinning on grain size. Scr Mater 59:696–698. doi:10.1016/j.scriptamat.2008.05.027

    Article  Google Scholar 

  23. Tsai MS, Chang CP (2013) Grain size effect on deformation twinning in Mg–Al–Zn alloy. Mater Sci Tech 29:759–763. doi:10.1179/1743284713Y.0000000237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Song.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, Y.D., Lee, Y.K., Park, H.K. et al. Effect of the initial grain size and orientation on the formation of deformation twins in Ti-15Mo alloy. J Mater Sci 52, 11668–11674 (2017). https://doi.org/10.1007/s10853-017-1314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1314-0

Keywords

Navigation