Skip to main content

Advertisement

Log in

Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Antibacterial polyacrylonitrile (PAN) nanofibers were developed by alkaline hydrolysis and subsequent chlorination. It was shown that the hydrolyzed nanofibers could serve as an N-halamine precursor through chlorination of the amide groups obtained by partial hydrolysis of the nitrile groups. The hydrolysis conditions were optimized, so that sufficient chlorine for effective antibacterial activities could be obtained on the surfaces. The chemical and physical structural changes were well characterized with FTIR, TGA, DSC and SEM. It was found that even though the hydrolyzed nanofibers cyclized with ionic and free radical mechanisms, the chlorinated nanofibers cyclized with only free radical mechanism as evidenced by its higher onset of cyclization temperature. On the other hand, the hydrolysis and chlorination process significantly improved the mechanical properties of the nanofibers. Moreover, the chlorinated nanofibers showed potent antibacterial activities against S. aureus and E. coli with about 6 logs inactivation. The developed antibacterial PAN nanofibers possess great potential for use in various fields, medical industry in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Klugman KP (2005) Antimicrobial resistance in developing countries. Part I: recent trends current status. Lancet Infect Dis 5(8):481–493

    Article  Google Scholar 

  2. Balsalobre LC, Dropa M, Matte MH (2014) An overview of antimicrobial resistance and ıts public health significance. Braz J Microbiol 45(1):1–6

    Article  Google Scholar 

  3. Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3(4):1154–1162

    Article  Google Scholar 

  4. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  Google Scholar 

  5. Boryo D (2013) The effect of microbes on textile material: a review on the way-out so far. Int J Eng Sci 2:9–13

    Google Scholar 

  6. Liu Y, Ren X, Liang J (2015) Antibacterial modification of cellulosic materials. BioResources 10(1):1964–1985

    Google Scholar 

  7. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg 3(2):113–126

    Article  Google Scholar 

  8. Kenawy E-R, Worley S, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384

    Article  Google Scholar 

  9. Worley SD, Williams DE (1988) Halamine water disinfectants. Crit Rev Env Contr 18:133–175

    Article  Google Scholar 

  10. Sun G, Wheatley WB, Worley SD (1994) A new cyclic N-halamine biocidal polymer. Ind Eng Chem Res 33(1):168–170

    Article  Google Scholar 

  11. Sun G, Xu X (1999) Durable and regenerable antibacterial finishing of fabrics: chemical structures. Text Chem Color 31(5):31

    Google Scholar 

  12. Ren X, Kou L, Liang J, Worley S, Tzou Y-M, Huang T (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15(4):593–598

    Article  Google Scholar 

  13. Liu S, Zhao N, Rudenja S (2010) S Surface interpenetrating networks of poly(ethylene terephthalate) and polyamides for effective biocidal properties. Macromol Chem Phys 211(3):286–296

    Article  Google Scholar 

  14. Kim SS, Kim J, Huang T, Whang HS, Lee J (2009) Antimicrobial polyethylene terephthalate (PET) treated with an aromatic N-halamine precursor, m-aramid. J Appl Polym Sci 114(6):3835–3840

    Article  Google Scholar 

  15. Sun X, Cao Z, Porteous N, Sun Y (2012) An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane. Acta Biomater 8(4):1498–1506

    Article  Google Scholar 

  16. Kocer HB, Cerkez I, Worley SD, Broughton RM, Huang TS (2011) N-halamine copolymers for use in antimicrobial paints. ACS Appl Mater Interfaces 3(8):3189–3194

    Article  Google Scholar 

  17. Bastarrachea LJ, McLandsborough LA, Peleg M, Goddard JM (2014) Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration, and stability. J Food Sci 79(5):E887–E897

    Article  Google Scholar 

  18. Hui F, Debiemme-Chouvy C (2013) Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromol 14(3):585–601

    Article  Google Scholar 

  19. Liu S, Sun G (2006) Durable and regenerable biocidal polymers: acyclic N-halamine cotton cellulose. Ind Eng Chem Res 45(19):6477–6482

    Article  Google Scholar 

  20. Ren X, Zhu C, Kou L, Worley SD, Kocer HB, Broughton RM, Huang TS (2010) Acyclic N-halamine polymeric biocidal films. J Bioact Compat Pol 25(4):392–405

    Article  Google Scholar 

  21. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49(2):463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  22. Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46(4):1101–1112

    Article  Google Scholar 

  23. Lin S, Cai Q, Ji J, Sui G, Yu Y, Yang X, Ma Q, Wei Y, Deng X (2008) Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Compos Sci Technol 68(15):3322–3329

    Article  Google Scholar 

  24. Simitzis JC, Georgiou PC (2015) Functional group changes of polyacrylonitrile fibres during their oxidative, carbonization and electrochemical treatment. J Mater Sci 50(13):4547–4564

    Article  Google Scholar 

  25. Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A 77(1):169–179

    Article  Google Scholar 

  26. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliver Rev 61(12):1033–1042

    Article  Google Scholar 

  27. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47(7):1402–1409

    Article  Google Scholar 

  28. Panthi G, Park S-J, Kim T-W, Chung H-J, Hong S-T, Park M, Kim H-Y (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50(13):4477–4485. doi:10.1007/s10853-015-8995-z

    Article  Google Scholar 

  29. Ren X, Akdag A, Zhu C, Kou L, Worley SD, Huang TS (2009) Electrospun polyacrylonitrile nanofibrous biomaterials. J Biomed Mater Res A 91(2):385–390

    Article  Google Scholar 

  30. Ren X, Kocer HB, Worley SD, Broughton RM, Huang TS (2013) Biocidal nanofibers via electrospinning. J Appl Polym Sci 127(4):3192–3197

    Article  Google Scholar 

  31. Wang L, Xie J, Gu L, Sun G (2006) Preparation of antimicrobial polyacrylonitrile fibers: blending with polyacrylonitrile-co-3-allyl-5, 5-dimethylhydantoin. Polym Bull 56(2):247–256

    Article  Google Scholar 

  32. Wei DF, Zhou RH, Zhang YW, Guan Y, Zheng AN (2013) Acrylonitrile copolymers containing guanidine oligomer: synthesis and use for the preparation of nonleaching antimicrobial acrylic fibers. J Appl Polym Sci 130(1):419–425

    Article  Google Scholar 

  33. Gliscinska E, Gutarowska B, Brycki B, Krucinska I (2013) Electrospun polyacrylonitrile nanofibers modified by quaternary ammonium salts. J Appl Polym Sci 128(1):767–775

    Article  Google Scholar 

  34. Litmanovich AD, Plate NA (2000) Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Macromol Chem Phys 201(16):2176–2180

    Article  Google Scholar 

  35. Lepoutre P, Hui SH, Robertson AA (1973) The water absorbency of hydrolyzed polyacrylonitrile-grafted cellulose fibers. J Appl Polym Sci 17(10):3143–3156

    Article  Google Scholar 

  36. Zhang G, Yan H, Ji S, Liu Z (2007) Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane. J Membr Sci 292(1):1–8

    Article  Google Scholar 

  37. Castel D, Ricard A, Audebert R (1990) Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J Appl Polym Sci 39(1):11–29

    Article  Google Scholar 

  38. Williams D, Elder E, Worley S (1988) Is free halogen necessary for disinfection? Appl Environ Microb 54(10):2583–2585

    Google Scholar 

  39. Barnes K, Liang J, Worley SD, Lee J, Broughton RM, Huang TS (2007) Modification of silica gel, cellulose, and polyurethane with a sterically hindered N-halamine moiety to produce antimicrobial activity. J Appl Polym Sci 105(4):2306–2313

    Article  Google Scholar 

  40. Ren X, Akdag A, Kocer HB, Worley SD, Broughton RM, Huang T (2009) N-halamine-coated cotton for antimicrobial and detoxification applications. Carbohydr Polym 78(2):220–226

    Article  Google Scholar 

  41. Ates B, Cerkez I (2017) Dual antibacterial functional regenerated cellulose fibers. J Appl Polym Sci 134:44872

    Article  Google Scholar 

  42. Liu S, Sun G (2008) New refreshable N-halamine polymeric biocides: N-chlorination of acyclic amide grafted cellulose. Ind Eng Chem Res 48(2):613–618

    Article  Google Scholar 

  43. Kampalanonwat P, Supaphol P (2011) Preparation of hydrolyzed electrospun polyacrylonitrile fiber mats as chelating substrates: a case study on copper (II) ions. Ind Eng Chem Res 50(21):11912–11921

    Article  Google Scholar 

  44. Zhang G, Meng H, Ji S (2009) Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance. Desalination 242(1–3):313–324

    Article  Google Scholar 

  45. Deng S, Bai R, Chen JP (2003) Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J Colloid Interface Sci 260(2):265–272

    Article  Google Scholar 

  46. Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS (2012) Multifunctional cotton fabric: antimicrobial and durable press. J Appl Polym Sci 124(5):4230–4238

    Article  Google Scholar 

  47. Wu GP, Lu CX, Ling LC, Lu YG (2009) Comparative investigation on the thermal degradation and stabilization of carbon fiber precursors. Polym Bull 62(5):667–678

    Article  Google Scholar 

  48. Chauque EF, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC (2016) Modification of electrospun polyacrylonitrile nanofibers with edta for the removal of Cd and Cr ions from water effluents. Appl Surf Sci 369:19–28

    Article  Google Scholar 

  49. Jin SY, Kim MH, Jeong YG, Yoon YI, Park WH (2017) Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers. Mater Design 124:69–77

    Article  Google Scholar 

  50. Cheng R, Zhou Y, Wang J, Cheng Y, Ryu S, Jin R (2013) High char-yield in an-am copolymer by acidic hydrolysis of homopolyacrylonitrile. Carbon Lett 14(1):34–39

    Article  Google Scholar 

  51. Hajir Bahrami S, Bajaj P, Sen K (2003) Thermal behavior of acrylonitrile carboxylic acid copolymers. J Appl Polym Sci 88(3):685–698

    Article  Google Scholar 

  52. Ji L, Medford AJ, Zhang X (2009) Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer 50(2):605–612

    Article  Google Scholar 

  53. Li R, Sun M, Jiang Z, Ren X, Huang TS (2014) N-halamine-bonded cotton fabric with antimicrobial and easy-care properties. Fiber Polym 15(2):234–240

    Article  Google Scholar 

  54. Lin J, Winkelmann C, Worley SD, Kim J, Wei CI, Cho U, Broughton RM, Santiago JI, Williams JF (2002) Biocidal polyester. J Appl Polym Sci 85(1):177–182

    Article  Google Scholar 

  55. Cerkez I, Sezer A, Bhullar SK (2017) Fabrication and characterization of electrospun poly (e-caprolactone) fibrous membrane with antibacterial functionality. R Soc Open Sci 4(2):160911

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Mehmet Orhan for his help with the antibacterial testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Cerkez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, O.E., Ates, B. & Cerkez, I. Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. J Mater Sci 52, 10013–10022 (2017). https://doi.org/10.1007/s10853-017-1240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1240-1

Keywords

Navigation