Skip to main content

Advertisement

Log in

Multifunctional ferrimagnetic glass–ceramic for the treatment of bone tumor and associated complications

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silver-containing ferrimagnetic glass–ceramic (Ag-SC45) was synthesized by means of melt and quenching technique. Samples were subjected to morphological, compositional, structural analyses, ability to generate heat, magnetic measurements at high and low magnetic field and antibacterial test using S. aureus strain. The influence of silver introduction and the effect of annealing process were investigated. Morphological, compositional and structural analyses evidenced the formation of metallic silver particles embedded in the glass–ceramic. The hysteresis cycles showed slight differences in the hysteresis cycle area ratio and coercive field values as a function of the annealing treatment and of silver presence, while no difference was evidenced in the specific power loss. All samples demonstrated the ability to produce heat when exposed to an alternating magnetic field. Finally, preliminary antibacterial test showed that Ag-SC45 samples not subjected to annealing possessed an antibacterial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Freeman AK, Sumathi VP, Jeys L (2015) Primary malignant tumours of the bone. Surgery (Oxford) 33:23–26. doi:10.1016/j.mpsur.2008.12.009

    Google Scholar 

  2. Freeman AK, Sumathi VP, Jeys L (2015) Metastatic tumours of bone. Surgery (Oxford) 33:34–39. doi:10.1016/j.mpsur.2014.10.005

    Article  Google Scholar 

  3. Selvaggi G, Scagliotti GV (2005) Management of bone metastases in cancer: a review. Crit Rev Oncol/Hematol 56:365–378

    Article  Google Scholar 

  4. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339. doi:10.1016/j.biomaterials.2005.11.044

    Article  Google Scholar 

  5. Mori K, Redini F, Gouin F, Cherrier B, Heymann D (2006) Osteosarcoma: current status of immunotherapy and future trends (Review). Oncol Rep Spandidos Publ 15(3):693–700

    Google Scholar 

  6. Scappaticci FA, Marina N (2001) New molecular targets and biological therapies in sarcomas. Cancer Treat Rev 27:317–326

    Article  Google Scholar 

  7. http://www.esho.info/professionals/hyperthermia/description/index.html, visited September 2016

  8. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487

    Article  Google Scholar 

  9. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  Google Scholar 

  10. Bettaieb A, Wrzal PK and Averill-Bates DA (2013) Hyperthermia: Cancer Treatment and Beyond. Medicine, Oncology,”Cancer Treatment—Conventional and Innovative Approaches”, book edited by Letícia Rangel, ISBN 978-953-51-1098-9, Published: May 9, 2013 under CC BY 3.0 license. © The Author(s). Chapter 12 DOI: 10.5772/55795

  11. Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A (2007) Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis 24:191–200

    Article  Google Scholar 

  12. Bretcanu O, Verné E, Cöisson M, Tiberto P, Allia P (2006) Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia. J Magn Magn Mater 305:529–533

    Article  Google Scholar 

  13. Bretcanu O, Vernè E, Cöisson M, Tiberto P, Allia P (2006) Temperature effect on the magnetic properties of the coprecipitation derived ferrimagnetic glass-ceramics. J Magn Magn Mater 300:412–417

    Article  Google Scholar 

  14. Bretcanu O, Spriano S, Vitale-Brovarone C, Vernè E (2006) Synthesis and characterization of coprecipitation-derived ferrimagnetic glass-ceramic. J Mater Sci 41:1029–1037. doi:10.1007/s10853-005-2636-x

    Article  Google Scholar 

  15. Bretcanu O, Spriano S, Vernè E, Coisson M, Tiberto P, Allia P (2005) The influence of crystallized Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramic. Acta Biomater 1:421–429

    Article  Google Scholar 

  16. Bruno M, Miola M, Bretcanu O, Vitale-Brovarone C, Gerbaldo R, Laviano F, Verné E (2014) Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic. Part I: morphological, mechanical and calorimetric characterization. J Biomater Appl 29(2):254–267

    Article  Google Scholar 

  17. Verné E, Bruno M, Miola M, Maina G, Bianco C, Cochis A, Rimondini L (2015) Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: leaching, bioactivity and cytocompatibility. Mat Sci Eng C 53:95–103

    Article  Google Scholar 

  18. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7(3):25–42

    Article  Google Scholar 

  19. Hench LL, Kokubo T (1998) Properties of bioactive glasses and glass-ceramics, Handbook of Biomaterial Properties, Springer US, ISBN 978-0-412-60330-3, 355-363

  20. Vernè E, Miola M, Ferraris S, Bianchi CL, Naldoni A, Maina G, Bretcanu O (2010) Surface activation of a ferrimagnetic glass-ceramic for antineoplastic drugs. Adv Biomater 12:B309–319

    Google Scholar 

  21. Shapeero LG, Poffyn B, De Visschere PJL, Sys G, Uyttendaele D, Vanel D, Forsyth R, Verstraete KL (2011) Complications of bone tumors after multimodal therapy. Eur J Radiol 77:51–67

    Article  Google Scholar 

  22. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  Google Scholar 

  23. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, Nanomedicine: nanotechnology. Biol Med 3:168–171

    Google Scholar 

  24. Monteiro DB, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Rodrigues de Camargo E, Barros Barbosa D (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110

    Article  Google Scholar 

  25. Slane J, Vivanco J, Rose W, Ploeg HL, Squire M (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mat Sci Eng C 48:188–196

    Article  Google Scholar 

  26. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517

    Article  Google Scholar 

  27. Vernè E, Di Nunzio S, Bosetti M, Appendino P, Vitale Brovarone C, Main G, Cannas M (2005) Surface characterization of silver-doped bioactive glass. Biomaterials 26:5111–5119

    Article  Google Scholar 

  28. Verné E, Miola M, Vitale Brovarone C, Cannas M, Gatti S, Fucale G, Maina G, Massé A, Nunzio S (2009) Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J Mat Sci Mat Med 20(3):733–7440

    Article  Google Scholar 

  29. Miola M, Ferraris S, Di Nunzio S, Robotti PF, Bianchi G, Fucale G, Maina G, Cannas M, Gatti S, Massé A, Vitale Brovarone C, Verné E (2009) Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. J Mat Sci Mat Med 20(3):741–749

    Article  Google Scholar 

  30. Miola M, Verné E, Vitale-Brovarone C, Baino F (2016) Antibacterial Bioglass-Derived Scaffolds: innovative Synthesis Approach and Characterization. Int J Appl Glass Sci 7(2):238–247

    Article  Google Scholar 

  31. Newby PJ, El-Gendy R, Kirkham J, Yang XB, Thompson ID, Boccaccini AR (2011) Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation. J Mater Sci Mater Med 22(3):557–569

    Article  Google Scholar 

  32. Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA (2013) Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med 24(9):2129–2135. doi:10.1007/s10856-013-4968-4

    Article  Google Scholar 

  33. Gonella F (2015) Silver doping of glasses. Ceram Int 41:6693–6701

    Article  Google Scholar 

  34. Sharma K, Meena SS, Saxena S, Yusuf SM, Srinivasan A, Kothiyal GP (2012) Structural and magnetic properties of glass-ceramics containing silver and iron oxide. Mater Chem Phys 133:144–150

    Article  Google Scholar 

  35. Verné E, Ferraris S, Miola M, Fucale G, Maina G, Robotti P, Bianchi G, Martinasso G, Ra Canuto, Vitale Brovarone C (2008) Synthesis and characterization of a bioactive and antibacterial glass-ceramic (II): plasma Spray coatings on metallic substrates. Adv Appl Ceram 107(5):245–253

    Article  Google Scholar 

  36. Verné E, Ferraris S, Miola M, Fucale G, Maina G, Martinasso G, Ra Canuto, Di Nunzio S, Vitale Brovarone C (2008) Synthesis and characterization of a bioactive and antibacterial glass-ceramic (I): microstructure, properties and biological behaviour. Adv Appl Ceram 107(5):234–244

    Article  Google Scholar 

  37. NCCLS (2003) NCCLS: performance standards for antimicrobial disk susceptibility tests. In: Approved standard M2-A9, 9th edn. NCCLS, Villanova, PA

  38. Wisniewski W, Harizanova R, Völkscha G, Rüssela C (2011) Crystallisation of iron containing glass–ceramics and the transformation of hematite to magnetite. Cryst Eng Comm 13:4025–4031. doi:10.1039/C0CE00629G

    Article  Google Scholar 

  39. Xu K, Heo J (2015) Lead sulfide quantum dots in glasses controlled by silver diffusion. J Non Cryst Solids 358(5):921–924

    Article  Google Scholar 

  40. Gaskell DR (1995) Introduction to the thermodynamics of materials, 3rd edn. Taylor and Francis, New York, pp 347–395

    Google Scholar 

  41. Kalska-Szostko B, Wykowska U, Satula D, Nordblad P (2015) Thermal treatment of magnetite nanoparticles. Beilstein J Nanotechnol 6:1385–1396

    Article  Google Scholar 

  42. Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31:6363–6377

    Article  Google Scholar 

  43. Ferraris M, Perero S, Miola M, Ferraris S, Verne E, Morgiel J (2010) Silver nanocluster–silica composite coatings with antibacterial properties. Mater Chem Phys 120:123–126

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Fucale Giacomo (Chemical, Clinical and Microbiological Analyses Dept., CTO, Turin, Italy) for its assistance during antibacterial test and the Ministry of Education, Universities and Research (MIUR) for financial support (Ph.D. Grant).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Miola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miola, M., Gerbaldo, R., Laviano, F. et al. Multifunctional ferrimagnetic glass–ceramic for the treatment of bone tumor and associated complications. J Mater Sci 52, 9192–9201 (2017). https://doi.org/10.1007/s10853-017-1078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1078-6

Keywords

Navigation