Skip to main content
Log in

Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to strong magnetism along with low density and low percolation threshold, hollow Fe3O4 nanostructures have important potential applications in absorbing materials. In this work, Fe3O4 nanotubes with both dielectric and magnetic losses, namely bi-loss features, were obtained through two-step chemical methods (hydrothermal method and activated carbon reduction). The Fe3O4 nanotubes show high dielectric loss due to the electronic relaxation polarization, and the concentration dependence of dielectric properties for Fe3O4 nanotubes composite can be well described by the effective dielectric theory. In comparison with bulk Fe3O4 with natural ferromagnetic resonance around 1.2 GHz, the as-prepared Fe3O4 nanotubes present a natural resonant peak at 4 GHz frequency, leading to the higher magnetic loss in the radar band (2–18 GHz). Therefore, the Fe3O4 nanotubes show better microwave absorption with minimum reflection loss up to −50.94 dB compared with other Fe3O4 nanostructures. Moreover, double loss peaks were observed in 70 and 80 wt% samples with thickness of 5 mm, making this material a good candidate for designing broadband metastructure absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Balci O, Polat EO, Kakenov N, Kocabas C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun 6:6628

    Article  Google Scholar 

  2. Sun H, Che RC, You X, Jiang YS, Yang ZB, Deng J, Qiu LB, Peng HS (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26:8120–8125

    Article  Google Scholar 

  3. Cao MS, Yang J, Song WL, Zhang DQ, Wen B, Jin HB, Hou ZL, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 4:6948–6955

    Google Scholar 

  4. Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    Article  Google Scholar 

  5. Kong L, Yin XW, Zhang YJ, Yuan XY, Li Q, Ye F, Cheng LF, Zhang LT (2013) electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C 117:19701–19711

    Article  Google Scholar 

  6. Li Y, Cao WQ, Yuan J, Wang DW, Cao MS (2015) Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J Mater Chem C 3:9276–9282

    Article  Google Scholar 

  7. Saini P, Choudhary V, Singh BP, Mathur R-B, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  Google Scholar 

  8. Zhou W, Hu X, Bai X, Zhou S, Sun C, Yan J, Chen P (2011) Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly (3,4-ethylenedioxythiophene) microspheres. ACS Appl Mater Interfaces 3:3839–3845

    Article  Google Scholar 

  9. Ting TH, Yu RP, Jau YN (2011) Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Mater Chem Phys 126:364–368

    Article  Google Scholar 

  10. He P, Hou ZL, Wang CY, Li ZJ, Jing J, Bi S (2017) Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram Int 43:262–267

    Article  Google Scholar 

  11. Lee CC, Yoshikawa N, Taniguchi S (2011) Microwave-induced substitutional-combustion reaction of Fe3O4/Al ceramic matrix porous composite. J Mater Sci 46:7004–7011. doi:10.1007/s10853-011-5669-3

    Article  Google Scholar 

  12. He S, Wang GS, Wang JW, Wei YZ, Wu Y, Guo L, Cao MS (2013) Facile size-controllable synthesis of colorful quasi-cubic-Fe2O3 materials from nanoscale to microscale and their properties related to the size effect. ChemPlusChem 78:875–883

    Article  Google Scholar 

  13. Chen H, Wei W, Liu J, Fang D (2012) Propagation of a mode-Ill interfacial crack in a piezoelectric-piezomagnetic bi-material. Int J Solids Struct 49:2547–2558

    Article  Google Scholar 

  14. Zhou H, Zhang H, Pei Y, Chen HS, Zhao H, Fang D (2015) Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale. Appl Phys Lett 106:081904

    Article  Google Scholar 

  15. Qu B, Zhu CL, Li CY, Zhang XT, Chen YJ (2016) Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 8:3730–3735

    Article  Google Scholar 

  16. Chen HS, Wang HL, Pei YM, Wei YJ, Liu B, Fang DN (2015) Crack instability of ferroelectric solids under alternative electric loading. J Mech Phys Solids 81:75–90

    Article  Google Scholar 

  17. Pan YF, Wang GS, Yue YH (2015) Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content. Rsc Adv 5:71718–71723

    Article  Google Scholar 

  18. Shen X, Song F, Xiang J, Liu M, Zhu Y, Wang Y (2012) Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers. J Am Ceram Soc 95:3863–3870

    Article  Google Scholar 

  19. Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L, Qin Y (2012) Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6:11009–11017

    Article  Google Scholar 

  20. Zhu H, Zhang H, Chen Y, Li Z, Zhang D, Zeng G, Huang Y, Wang W, Wu Q, Zhi C (2016) The electromagnetic property and microwave absorption of wormhole-like mesoporous carbons with different surface areas. Mater Sci 51:9723–9731

    Article  Google Scholar 

  21. Chen YJ, Zhang AB, Ding LC, Liu Y, Lu HL (2016) A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties. Compos Part B-Eng 108:386–392

    Article  Google Scholar 

  22. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593

    Article  Google Scholar 

  23. Li ZJ, Hou ZL, Song WL, Liu XD, Cao WQ, Shao XH, Cao MS (2016) Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 8:10415–10424

    Article  Google Scholar 

  24. Liu Y, Cui T, Wu T, Li Y, Tong G (2016) Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 27:165707

    Article  Google Scholar 

  25. Wen F, Zhang F, Zheng H (2012) Microwave dielectric and magnetic properties of superparamagnetic 8-nm Fe3O4 nanoparticles. J Magn Magn Mater 324:2471–2475

    Article  Google Scholar 

  26. Zhu YF, Fu YQ, Natsuki T, Ni QQ (2013) Fabrication and microwave absorption properties of BaTiO3 nanotube/polyaniline hybrid nanomaterials. Polym Compos 34:265–273

    Article  Google Scholar 

  27. Qi X, Xu J, Hu Q, Deng Y, Xie R, Jiang Y, Zhong W, Du Y (2016) Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci Rep 6:28310

    Article  Google Scholar 

  28. Wang H, Wan L, Zhang J, Chen Y, Hu W, Liu L, Zhong C, Deng Y (2016) Enhanced microwave absorbing properties of surface-modified Co–Ni–P nanotubes. Mater Lett 169:193–196

    Article  Google Scholar 

  29. Hou ZL, Zhang M, Kong LB, Fang HM, Li ZJ, Zhou HF, Jin HB, Cao MS (2013) Microwave permittivity and permeability experiments in high-loss dielectrics: caution with implicit Fabry–Perot resonance for negative imaginary permeability. Appl Phys Lett 103:162905

    Article  Google Scholar 

  30. Torres-Heredia JJ, López-Urías F, Muñoz-Sandoval E (2005) Micromagnetic simulation of iron nanorings. J Magn Magn Mater 294:e1–e5

    Article  Google Scholar 

  31. Liu XD, Hou ZL, Zhang BX, Zhan KT, He P, Zhang KL, Song WL (2016) A general model of dielectric constant for porous materials. Appl Phys Lett 108:102902

    Article  Google Scholar 

  32. Jaouen V, Brayner R, Lantiat D, Steunou N, Coradin T (2010) In situ growth of gold colloids within alginate films. Nanotechnology 21:185605

    Article  Google Scholar 

  33. Li X, Han X, Tan Y, Xu P (2008) Preparation and microwave absorption properties of Ni–B alloy-coated Fe3O4 particles. J Alloys Compd 464:352–356

    Article  Google Scholar 

  34. Han R, Li W, Pan W, Zhu M, Zhou D, Li F (2014) 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci Rep 4:7493

    Article  Google Scholar 

  35. Liu Q, Zi Z, Zhang M, Zhang P, Pang A, Dai J, Sun Y (2013) Solvothermal synthesis of hollow glass microspheres/Fe3O4 composites as a light weight microwave absorber. J Mater Sci 48:6048–6055. doi:10.1007/s10853-013-7401-y

    Article  Google Scholar 

  36. Ni S, Lin S, Pan Q, Yang F, Huang K, He D (2009) Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J Phys D Appl Phys 42:055004

    Article  Google Scholar 

  37. Li W, Wu T, Wang W, Zhai P, Guan J (2014) Broadband patterned magnetic microwave absorber. J Appl Phys 116:044110

    Article  Google Scholar 

  38. Jia K, Zhao R, Zhong J, Liu X (2010) Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J Magn Magn Mater 322:2167–2171

    Article  Google Scholar 

  39. Xu HL, Shen Y, Bi H, Liang WF, Yang R (2012) Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435:98–103

    Article  Google Scholar 

  40. Qiu J, Qiu T (2015) Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube–hollow carbon fiber composites. Carbon 81:20–28

    Article  Google Scholar 

  41. Lu X, Wu Y, Cai H, Qu X, Ni L, Teng C, Zhu Y, Jiang L (2015) Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. Rsc Adv 5:54175–54181

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51302312), BUCT Fund for Disciplines Construction (Project No. XK1702), and the Fundamental Research Funds for the Central Universities (Jd1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ling Hou or Song Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Hou, ZL., Zhang, KL. et al. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J Mater Sci 52, 8258–8267 (2017). https://doi.org/10.1007/s10853-017-1041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1041-6

Keywords

Navigation