Skip to main content
Log in

Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, Ag@Fe3O4@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@Fe3O4@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of Ag+ by CNC were explored. The results showed that Fe3O4 was formed with sphere-like structure and dispersed uniformly. Ag@Fe3O4@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag@ Fe3O4@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969–3976

    Article  Google Scholar 

  2. Bhunia P, Kim G, Baik C, Lee H (2012) A strategically designed porous iron-iron oxide on graphene for heavy metal adsorption. Chem Commun 48:9888–9890

    Article  Google Scholar 

  3. Mi F, Chen X, Ma Y, Yin S, Yuan F, Zhang H (2011) Facile synthesis of hierarchical core–shell Fe3O4@MgAl-LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Chem Commun 47:12804–12806

    Article  Google Scholar 

  4. Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26

    Article  Google Scholar 

  5. Das D, Kar T, Das PK (2012) Gel-nanocomposites: materials with promising applications. Soft Matter 8:2348–2365

    Article  Google Scholar 

  6. Zhang M, Zhao YH, Yan L, Peltier R, Hui WL, Yao X, Cui YL, Chen XF, Sun HY, Wang ZK (2016) Interfacial engineering of bimetallic Ag/Pt nanoparticles on reduced graphene oxide for enhanced antimicrobial activity. ACS Appl Mater Interfaces 8:8834–8840

    Article  Google Scholar 

  7. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808

    Article  Google Scholar 

  8. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfce Sci 145:83–96

    Article  Google Scholar 

  9. Song D, Yang R, Wang CW, Xiao R, Long F (2016) Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 6:22870

    Article  Google Scholar 

  10. Xu SJ, Chen SY, Zhang F, Jiao CL, Song JC, Chen YY, Lin H, Gotoh Y, Morikawa H (2016) Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater Des 95:107–118

    Article  Google Scholar 

  11. Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A, Nicula C, Ziemkowska W, Basiak D, Danciu V, Vulpoi A, Baia L, Falup A (2016) Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2–SiO2, Ag/N–TiO2 or Au/TiO2. Food Chem 197:790–798

    Article  Google Scholar 

  12. Luo ZT, Zheng KY, Xie JP (2014) Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem Commun 50:5143–5155

    Article  Google Scholar 

  13. Li AY, Kaushik M, Li CJ, Moores A (2016) Microwave-assisted synthesis of magnetic carboxymethyl cellulose-embedded Ag–Fe3O4 nanocatalysts for selective carbonyl hydrogenation. ACS Sustain Chem Eng 4:965–973

    Article  Google Scholar 

  14. Zhu Z, Lu ZY, Wang DD, Tang X, Yan YS, Shi WD, Wang YS, Gao NL, Yao X, Dong HJ (2016) Construction of high-dispersed Ag/Fe3O4/g–C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ 182:115–122

    Article  Google Scholar 

  15. Zhu SM, Fan CZ, Wang JQ, He JN, Liang EJ, Chao MJ (2015) Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe3O4 nanocomposites. J Colloid Interfce Sci 438:116–121

    Article  Google Scholar 

  16. Zhao YL, Tao CR, Xiao G, Wei GP, Li LH, Liu CX, Su HJ (2016) Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites. Nanoscale 8:5313–5326

    Article  Google Scholar 

  17. Zheng BZ, Zhang MH, Xiao D, Jin Y, Choi MMF (2010) Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor. Inorg Mater 46:1106–1111

    Article  Google Scholar 

  18. Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  Google Scholar 

  19. Ma JJ, Wang K, Zhan MS (2016) Growth mechanism and electrical and magnetic properties of Ag–Fe3O4 core–shell nanowires. ACS Appl Mater Interfaces 7:16027–16039

    Article  Google Scholar 

  20. Xiong R, Lu CH, Wang YR, Zhou ZH, Zhang XX (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910–14918

    Article  Google Scholar 

  21. Li WH, Yang N (2016) Green and facile synthesis of Ag–Fe3O4 nanocomposites using the aqueous extract of Crataegus pinnatifida leaves and their antibacterial performance. Mater Lett 162:157–160

    Article  Google Scholar 

  22. Ghaseminezhad SM, Shojaosadati SA (2016) Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch. Carbohydr Polym 144:454–463

    Article  Google Scholar 

  23. Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4–Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Phys B Condens Matter 457:30–35

    Article  Google Scholar 

  24. Dong YY, Yao K, Bian J, Ma MG, Yi LJ (2015) Ag particles-filled cellulose hybrids: microwave-assisted synthesis, characterization and antibacterial activity. Sci Adv Mater 7:1028–1038

    Article  Google Scholar 

  25. Cao SW, Zhu YJ, Cheng GF, Huang YH (2009) ZnFe2O4 nanoparticles: microwave hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J Hazard Mater 171:431–435

    Article  Google Scholar 

  26. Phuruangrat A, Kuntalue B, Thongtem S, Thongtem T (2016) Synthesis of cubic CuFe2O4 nanoparticles by microwave-hydrothermal method and their magnetic properties. Mater Lett 167:65–68

    Article  Google Scholar 

  27. Chen X, Yang B, Qi C, Sun TW, Chen F, Wu J, Feng XP, Zhu YJ (2016) DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein. Dalton Trans 45:1648–1656

    Article  Google Scholar 

  28. Yao K, Liu S, Dong YY, Wang B, Bian J, Ma MG (2016) Comparative study of CuO crystals on the cellulose substrate by the microwave-assisted hydrothermal method and hydrothermal method. Mater Des 90:129–136

    Article  Google Scholar 

  29. Padalkar S, Capadona JR, Rowan SJ, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502

    Article  Google Scholar 

  30. Shi ZQ, Tang JT, Chen L, Yan CR, Tanvir S, Anderson WA, Berry RM, Tam KC (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3:603–611

    Article  Google Scholar 

  31. Lokanathan AR, Uddin KMA, Rojas OJ, Laine J (2014) Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromol 15:373–379

    Article  Google Scholar 

  32. Liu H, Wang D, Song ZQ, Shang SB (2011) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74

    Article  Google Scholar 

  33. Drogat N, Granet R, Sol V, Memmi A, Saad N, Koerkamp CK, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13:1557–1562

    Article  Google Scholar 

  34. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  Google Scholar 

  35. Kaushik M, Li AY, Hudson R, Masnadi M, Li CJ, Moores A (2016) Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenaion silver nanocatalysts. Green Chem 16:129–133

    Article  Google Scholar 

  36. Hosseinidoust Z, Basnet M, van de Ven TGM, Tufenkji N (2016) One-pot green synthesis of anisotropic silver nanoparticles. Environ Sci Nano 3:1259–1264

    Article  Google Scholar 

  37. Xiong R, Lu CH, Zhang W, Zhou ZH, Zhang XX (2013) Facie synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95:214–219

    Article  Google Scholar 

  38. Han YY, Wu XD, Zhang XX, Zhou ZH, Lu CH (2016) Reductant-free synthesis of silver nanoparticles-doped cellulose microgels for catalyzing and product separation. ACS Sustain Chem Eng 4:6322–6331

    Article  Google Scholar 

  39. Cao J, Sun XW, Zhang XX, Lu CH (2016) Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications. Int J Biol Macromol 92:167–173

    Article  Google Scholar 

  40. Nadagouda MN, Varma RS (2007) Synthesis of thermally state carboxymethyl cellulose/metal biodegradable nanocomposites for biological applications. Biomacromol 8:2762–2767

    Article  Google Scholar 

  41. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  Google Scholar 

  42. Benaissi K, Johnson L, Walsh DA, Thielemans W (2010) Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chem 12:220–222

    Article  Google Scholar 

  43. Huang HZ, Yang XR (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 15:2627–2631

    Article  Google Scholar 

  44. Liu S, Yao K, Fu LH, Ma MG (2016) Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors. RSC Adv 6:2135–2140

    Article  Google Scholar 

  45. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238

    Article  Google Scholar 

  46. Chi Y, Zhao L, Yuan Q, Li Y, Zhang J, Tu J, Li N, Li X (2012) Facile encapsulation of monodispersed silver nanoparticles in mesoporous compounds. Chem Eng J 195–196:254–260

    Article  Google Scholar 

  47. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  48. Dong YY, Deng F, Zhao JJ, He J, Ma MG, Xu F, Sun RC (2014) Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohydr Polym 99:166–172

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities (No. 2015ZCQ-CL-03) and the Foundation (No. KF201607) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guo Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, YY., Liu, S., Liu, YJ. et al. Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution. J Mater Sci 52, 8219–8230 (2017). https://doi.org/10.1007/s10853-017-1038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1038-1

Keywords

Navigation