Skip to main content

Advertisement

Log in

Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Article  Google Scholar 

  2. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  Google Scholar 

  3. Zhu C, Yang G, Li H, Dan D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    Article  Google Scholar 

  4. Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169

    Article  Google Scholar 

  5. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853

    Article  Google Scholar 

  6. Qiu J-D, Wang G-C, Liang R-P, Xia X-H, Hong-Wen Y (2011) Controllable deposition of platinum nanoparticles on graphene as and electrocatalyst for direct methanol fuel cells. J Phys Chem C 115:15639–15645

    Article  Google Scholar 

  7. Zhang C, Hongmei Y, Li F, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO\(_{2}\) nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369

    Article  Google Scholar 

  8. Clark JH (2016) Green and sustainable chemistry: an introduction. In: Green and sustainable medicinal chemistry: methods, tools and strategies for the 21st century pharameceutical industry, number 46 in RSC Green Chemistry. The Royal Society of Chemistry, Cambridge

  9. Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302(5650):1528–1531

    Article  Google Scholar 

  10. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  11. Pagliaro M, Konstandopoulos AG, Ciriminna R, Palmisano G (2010) Solar hydrogen: fuel of the near future. Energy Environ Sci 3:279–287

    Article  Google Scholar 

  12. Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalyst PEM fuel cells. J Mater Chem A 1:4631–4641

    Article  Google Scholar 

  13. An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139

    Article  Google Scholar 

  14. Changwei X, Shen P, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531

    Article  Google Scholar 

  15. Yan Qiao and Chang Ming Li (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036

    Article  Google Scholar 

  16. Rasmi KR, Vanithakumari SC, George RP, Mallika C, Kamachi Mudali U (2015) Nanoparticles of Pt loaded on a vertically aligned TiO\(_{2}\) nanotube bed. RSC Adv 5:108050–108057

    Article  Google Scholar 

  17. Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46:273–285

    Article  Google Scholar 

  18. Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadirgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Energy 38:6830–6841

    Article  Google Scholar 

  19. Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energy 37:4597–4605

    Article  Google Scholar 

  20. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41:4214–4226

    Article  Google Scholar 

  21. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  Google Scholar 

  22. Han M, Li M, Xin W, Zeng J, Liao S (2015) Highly stable and active Pt electrocatalyst on TiO\(_{2}\)-CoO4-C composite support for polymer exchange membrane fuel cells. Electrochim Acta 154:266–272

    Article  Google Scholar 

  23. Sui X-L, Wang Z-B, Li C-Z, Zhang J-J, Zhao L, Da-Ming G (2014) Effect of pH value on H\(_{2}\)Ti\(_{2}\)O\(_{5}\)/TiO\(_{2}\) composite nanotubes as pt catalyst support for methanol oxidation. J Power Sources 272:196–202

    Article  Google Scholar 

  24. Lei D, Shao Y, Sun J, Yin G, Liu J, Wang Y (2016) Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 29:314–322

    Article  Google Scholar 

  25. Eberle U, Müller B, von Helmolt R (2012) Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ Sci 5:8780–8798

    Article  Google Scholar 

  26. Zhao L, Wang Z-B, Liu J, Zhang J-J, Sui X-L, Zhang L-M, Da-Ming G (2015) Facile one-pot synthesis of Pt/graphene-TiO\(_{2}\) hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217

    Article  Google Scholar 

  27. Liu J, Liu B, Ni Z, Deng Y, Zhong C, Wenbin H (2014) Improved catalytic performance of Pt/TiO\(_{2}\) nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim Acta 150:146–150

    Article  Google Scholar 

  28. Liu R, Sen A (2012) Controlled synthesis of heterogeneous metal–titania nanostructures and their applications. J Am Chem Soc 134(42):17505–17512

    Article  Google Scholar 

  29. Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photoctalytic degradation of methylene-blue. Nano-Micro Lett 3(4):236–241

    Article  Google Scholar 

  30. Qiao P, Zou S, Shaodan X, Liu J, Li Y, Ma G, Xiao L, Lou H, Fan J (2014) A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. J Mater Chem 2:17321–17328

    Article  Google Scholar 

  31. Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77

    Article  Google Scholar 

  32. Muench F, Felix E-M, Rauber M, Schaefer S, Antoni M, Kunz U, Kleebe H-J, Trautmann C, Ensinger W (2016) Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1d nano- and microscale building blocks. Electrochim Acta 202:47–54

    Article  Google Scholar 

  33. Tian M, Guosheng W, Chen A (2012) Unique electrochemical catalytic behaviour of Pt nanoparticles deposited on TiO\(_{2}\) nanotubes. ACS Catal 2:425–432

    Article  Google Scholar 

  34. Ting C-C, Liu C-H, Tai C-Y, Hsu S-C, Chao C-S, Pan F-M (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172

    Article  Google Scholar 

  35. Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO\(_{2}\) nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173

    Article  Google Scholar 

  36. Muench F, Bohn S, Rauber M, Seidl T, Radetinac A, Kunz U, Lauterbach S, Kleebe H-J, Trautmann C, Ensinger W (2014) Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Appl Phys A 116:287–294

    Article  Google Scholar 

  37. Muench F, Eils A, Toimil-Molares ME, Hossain UH, Radetinac A, Stegmann C, Kunz U, Lauterbach S, Kleebe H-J, Ensinger W (2014) Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surf Coat Technol 242:100–108

    Article  Google Scholar 

  38. Felix E-M, Antoni M, Pause I, Schaefer S, Kunz U, Weidler N, Muench F, Ensinger W (2016) Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chem 18:558–564

    Article  Google Scholar 

  39. Felix E-M, Muench F, Ensinger W (2014) Green plating of high aspect ratio gold nanotubes and their morphology-dependent performance in enzyme-free peroxide sensing. RSC Adv 4:24504–24510

    Article  Google Scholar 

  40. Boehme M, Fu G, Ionescu E, Ensinger W (2010) Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method. Nano-Micro Lett 2(1):26–30

    Article  Google Scholar 

  41. Zhang C, Hongmei Y, Li Y, Li F, Gao Y, Song W, Shao Z, Yi B (2013) Simple synthesis of Pt/TiO\(_{2}\) nanotube arrays with high activity and stability. J Electroanal Chem 701:14–19

    Article  Google Scholar 

  42. Wiberg N (2001) Holleman–Wiberg’s inorganic chemistry. Academic Press, New York

    Google Scholar 

  43. Cornelius TW, Apel PY, Schiedt B, Trautmann C, Toimil-Molares ME, Karim S, Neumann R (2007) Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nucl Instrum Methods Phys Res B 265:553–557

    Article  Google Scholar 

  44. Sertova N, Balanzat E, Toulemonde M, Trautmann C (2009) Investigation of initial stage of chemical etching of ion tracks in polycarbonate. Nucl Instrum Methods Phys Res B 267:1039–1044

    Article  Google Scholar 

  45. Kundu MK, Sadhukhan M, Barman S (2015) Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J Mater Chem B 3:1289–1300

    Article  Google Scholar 

  46. Yang Z, Qi C, Zheng X, Zheng J (2015) Facile synthesis of silver nanoparticle-decorated graphene oxide nanocomposites and their application for electrochemical sensing. New J Chem 39:9358–9362

    Article  Google Scholar 

  47. Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, Leung KT (2016) Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale 8:1658–1664

    Article  Google Scholar 

  48. Kim EY, Kumar D, Khang G, Lim D-K (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3:8433–8444

    Article  Google Scholar 

  49. Schaefer S, Felix E-M, Muench F, Antoni M, Lohaus C, Brötz J, Kunz U, Gärtner I, Ensinger W (2016) NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyt with high noble metal utilisation. RSC Adv 6:70033–70039

    Article  Google Scholar 

  50. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19

    Article  Google Scholar 

  51. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalyst. Electrochim Acta 53:3181–3188

    Article  Google Scholar 

  52. Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21:3562–3569

    Article  Google Scholar 

  53. Hua H, Chenguo H, Zhao Z, Liu H, Xie X, Xi Y (2013) Pt nanoparticles supported on submicrometer-sized TiO\(_{2}\) spheres for effective methanol and ethanol oxidation. Electrochim Acta 105:130–136

    Article  Google Scholar 

  54. Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IY, Tsirlina GA, Savinova ER (2008) Influence of structural defects on the electrocatalytic activity of platinum. J Solid State Electrochem 12:497–509

    Article  Google Scholar 

  55. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12

    Article  Google Scholar 

  56. Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321

    Article  Google Scholar 

  57. Hitmi H, Belgsir EM, Léger J-M, Lamy C, Lezna RO (1994) A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochim Acta 39(3):407–415

    Article  Google Scholar 

  58. Bönnemann H, Brijoux W (1996) Catalytically active metal powders and colloids. In: Active materials, pp 339–379. VCH Verlagsgesellschaft mbH

  59. Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835

    Article  Google Scholar 

  60. Perales-Rondón JV, Solla-Guln J, Herrero E, Sánchez-Sánchez CM (2017) Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Appl Catal B 201:48–57

    Article  Google Scholar 

  61. Jiang R, Li B, Fang C, Wang J (2014) Metal/semicondutor hybrid nanostructures for plasmon enhanced applications. Adv Mater 26:5274–5309

    Article  Google Scholar 

  62. Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H (2014) Electrospun TiO\(_2\) nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces 6:5759–5767

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the German Federal Ministry of Education and Research and the VDI/VDE IT for financial support (Project 1D-SENSE, FKZ 16ES0289K). Additionally, we would like to thank Prof. C. Trautmann and the material research group (GSI Helmholzzentrum für Schwerionenforschung GmbH) for the irradiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Antoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoni, M., Muench, F., Kunz, U. et al. Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis. J Mater Sci 52, 7754–7767 (2017). https://doi.org/10.1007/s10853-017-1035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1035-4

Keywords

Navigation