Skip to main content
Log in

Three-dimensional tin dioxide–graphene composite nanofiber membrane as binder-free anode for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercialization of tin dioxide-based anodes for lithium-ion batteries has still not been achieved mainly due to the poor cycling performance caused by the huge volume changes of the electrodes. We herein synthesized a three-dimensional tin dioxide–graphene composite nanofiber (3D SnO2/GNF) membrane via a hydrothermal and electrospinning method assisted by a subsequent calcination process. In this cross-linked three-dimensional network, SnO2 particles are loaded on the graphene crystal structure uniformly, with the aggregation and volume expansion partially inhibited. As a free-standing 3D network, the resultant nanofiber membrane could be used as the anode directly without the addition of the binder and conductive agent. Serving as a binder-free anode material for LIBs, the SnO2/GNF anode exhibits good electrochemical performance with high reversible capacity and excellent cycling stability. More specifically, a high capacity of 763.9 mAh g−1 was obtained at a current density of 100 mA g−1 after 300 cycles. The extraordinary performance could be ascribed to the positive synergistic effect of the nanosized SnO2 particles and graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Polym Rev 51:239. doi:10.1080/15583724.2011.593390

    Article  Google Scholar 

  2. Winter M, Besenhard JO (1999) Electrochim Acta 45:31. doi:10.1016/S0013-4686(99)00191-7

    Article  Google Scholar 

  3. P Poizot, S Laruelle, S Grugeon, L Dupont, JM Tarascon (2000) Nature 407: 496. http://www.nature.com/nature/journal/v407/n6803/suppinfo/407496a0_S1.html

  4. Deng D, Kim MG, Lee JY, Cho J (2009) Energy Environ Sci 2:818. doi:10.1039/B823474D

    Article  Google Scholar 

  5. Liu B, Zhang J, Wang X et al (2012) Nano Lett 12:3005. doi:10.1021/nl300794f

    Article  Google Scholar 

  6. Guo XW, Fang XP, Sun Y, Shen LY, Wang ZX, Chen LQ (2013) J Power Sources 226:75. doi:10.1016/j.jpowsour.2012.10.068

    Article  Google Scholar 

  7. Wang Y, Lee JY, Zeng HC (2005) Chem Mater 17:3899. doi:10.1021/cm050724f

    Article  Google Scholar 

  8. Larcher D, Beattie S, Morcrette M, Edstroem K, Jumas JC, Tarascon JM (2007) J Mater Chem 17:3759. doi:10.1039/b705421c

    Article  Google Scholar 

  9. Ding SJ, Chen JS, Qi GG et al (2011) J Am Chem Soc 133:21. doi:10.1021/ja108720w

    Article  Google Scholar 

  10. Ding SJ, Wang ZY, Madhavi S, Lou XW (2011) J Mater Chem 21:13860. doi:10.1039/c1jm11902h

    Article  Google Scholar 

  11. Liu J, Li W, Manthiram A (2010) Chem Commun 46:1437. doi:10.1039/B918501A

    Article  Google Scholar 

  12. Dirican M, Yanilmaz M, Fu K, Lu Y, Kizil H, Zhang X (2014) J Power Sources 264:240. doi:10.1016/j.jpowsour.2014.04.102

    Article  Google Scholar 

  13. Dirican M, Yanilmaz M, Fu K, Lu Y, Kizil H, Zhang XW (2014) J Power Sources 264:240. doi:10.1016/j.jpowsour.2014.04.102

    Article  Google Scholar 

  14. Kong J, Liu Z, Yang Z et al (2012) Nanoscale 4:525. doi:10.1039/C1NR10962F

    Article  Google Scholar 

  15. Liang J, Yu X-Y, Zhou H, Wu HB, Ding S, Lou XW (2014) Angew Chem Int Ed 53:12803. doi:10.1002/anie.201407917

    Article  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV et al (2004) Science 306:666. doi:10.1126/science.1102896

    Article  Google Scholar 

  17. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498. doi:10.1021/nl802558y

    Article  Google Scholar 

  18. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Solid State Commun 146:351. doi:10.1016/j.ssc.2008.02.024

    Article  Google Scholar 

  19. Yue WB, Lin ZZ, Jiang SH, Yang XJ (2012) J Mater Chem 22:16318. doi:10.1039/c2jm30805c

    Article  Google Scholar 

  20. Ding SJ, Luan DY, Boey FYC, Chen JS, Lou XW (2011) Chem Commun 47:7155. doi:10.1039/c1cc11968k

    Article  Google Scholar 

  21. Paek SM, Yoo E, Honma I (2009) Nano Lett 9:72. doi:10.1021/nl802484w

    Article  Google Scholar 

  22. Li S, Wang YZ, Lai C et al (2014) J Mater Chem A 2:10211. doi:10.1039/c4ta01131g

    Article  Google Scholar 

  23. Liu C, Wang P, Du C et al (2017) J Nanosci Nanotechnol 17:1877. doi:10.1166/jnn.2017.13013

    Google Scholar 

  24. Sher Shah MSA, Lee J, Park AR et al (2017) Electrochim Acta 224:201. doi:10.1016/j.electacta.2016.12.049

    Article  Google Scholar 

  25. Dong Z, Kennedy SJ, Wu Y (2011) J Power Sources 196:4886. doi:10.1016/j.jpowsour.2011.01.090

    Article  Google Scholar 

  26. Lee J, Jo C, Park B et al (2014) Nanoscale 6:10147. doi:10.1039/C4NR01033G

    Article  Google Scholar 

  27. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2:463. doi:10.1021/nn700375n

    Article  Google Scholar 

  28. Krissanasaeranee M, Supaphol P, Wongkasemjit S (2010) Mater Chem Phys 119:175. doi:10.1016/j.matchemphys.2009.08.040

    Article  Google Scholar 

  29. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Nano Lett 8:36. doi:10.1021/nl071822y

    Article  Google Scholar 

  30. Wang D, Li X, Yang J et al (2013) Phys Chem Chem Phys 15:3535. doi:10.1039/C3CP44172E

    Article  Google Scholar 

  31. Shen Z, Hu Y, Chen Y et al (2016) Electrochim Acta 188:661. doi:10.1016/j.electacta.2015.12.062

    Article  Google Scholar 

  32. Chen Y, Hu Y, Shen Z et al (2016) Electrochim Acta 210:53. doi:10.1016/j.electacta.2016.05.086

    Article  Google Scholar 

  33. Sun W, Hu R, Liu H et al (2014) J Power Sources 268:610. doi:10.1016/j.jpowsour.2014.06.039

    Article  Google Scholar 

  34. Han S, Jang B, Kim T, Oh SM, Hyeon T (2005) Adv Func Mater 15:1845. doi:10.1002/adfm.200500243

    Article  Google Scholar 

  35. Park M-S, Wang G-X, Kang Y-M, Wexler D, Dou S-X, Liu H-K (2007) Angew Chem 119:764. doi:10.1002/ange.200603309

    Article  Google Scholar 

  36. Shahid M, Yesibolati N, Reuter MC, Ross FM, Alshareef HN (2014) J Power Sources 263:239. doi:10.1016/j.jpowsour.2014.03.146

    Article  Google Scholar 

  37. Zhou X, Wan L-J, Guo Y-G (2013) Adv Mater 25:2152. doi:10.1002/adma.201300071

    Article  Google Scholar 

  38. Wan Y, Sha Y, Luo S et al (2015) J Power Sources 295:41. doi:10.1016/j.jpowsour.2015.06.125

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Aviation Science Foundation of China (2008ZH68002), the New Century Talent Support Plan of the Ministry of Education of China (2007NCET-07-0723) and the National Natural Science Foundation of China (60936003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Guo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, Y., Lin, J. et al. Three-dimensional tin dioxide–graphene composite nanofiber membrane as binder-free anode for high-performance lithium-ion batteries. J Mater Sci 52, 8097–8106 (2017). https://doi.org/10.1007/s10853-017-1017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1017-6

Keywords

Navigation