Skip to main content
Log in

Fabrication of partially biobased carbon fibers from novel lignosulfonate–acrylonitrile copolymers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lignin, as an abundant carbon-rich renewable resource, is a promising precursor for carbon fibers. However, due to the poor spinnability of lignin, a great challenge comes from the spinning of precursor fibers. In this work, a series of lignosulfonate–acrylonitrile (LS–AN) copolymers with different LS contents were prepared by a two-step process consisting of esterification and free radical copolymerization. In this strategy, lignin was used as a macromer and chemically bonded to acrylonitrile segmer, resulting in significant improvement of the spinnability. Continuous long precursor fibers with a dense structure were successfully prepared from these copolymers by a wet spinning technique and then converted into carbon fibers by thermal stabilization and carbonization. The LS–AN copolymers were characterized by FTIR, GPC, and rheological method. The results confirmed the macromolecular characteristic of the LS–AN copolymers. A hanging lantern model was proposed to describe the molecular structure of the LS–AN copolymers. Effect of the LS–AN copolymers on the microstructure and mechanical properties of carbon fibers was investigated by SEM, single fiber tensile testing, XRD, and HRTEM. The results demonstrated the feasibility of developing partially biobased carbon fibers from the novel LS–AN copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Morgan P (2005) Carbon fibers and their composites. CRC Press, New York

    Book  Google Scholar 

  2. Ding R, Wu HC, Thunga M, Bowler N, Kessler MR (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126–136

    Article  Google Scholar 

  3. Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4(3):283–296

    Article  Google Scholar 

  4. Mainka H, Hilfert L, Busse S, Edelmann F, Haak E, Herrmann AS (2015) Characterization of the major reactions during conversion of lignin to carbon fiber. J Mater Res Technol 4(4):377–391

    Article  Google Scholar 

  5. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728

    Article  Google Scholar 

  6. Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Edit 53(21):5262–5298

    Article  Google Scholar 

  7. Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17(11):4862–4887

    Article  Google Scholar 

  8. Schreiber M, Vivekanandhan S, Cooke P, Mohanty AK, Misra M (2014) Electrospun green fibres from lignin and chitosan: a novel polycomplexation process for the production of lignin-based fibres. J Mater Sci 49:7949–7958. doi:10.1007/s10853-014-8481-z

    Article  Google Scholar 

  9. Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  Google Scholar 

  10. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246813. doi:10.1126/science.1246843

    Article  Google Scholar 

  11. Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8(23):3941–3958

    Article  Google Scholar 

  12. Souto F, Calado V, Pereira N (2015) Carbon fiber from lignin: a literature review. Materia-Rio De Janeiro 20(1):100–114

    Article  Google Scholar 

  13. Ogale AA, Zhang M, Jin J (2016) Recent advances in carbon fibers derived from biobased precursors. J Appl Polym Sci 133(45):1–13. doi:10.1002/APP.43794

    Article  Google Scholar 

  14. Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166

    Article  Google Scholar 

  15. Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers. Springer, Berlin

    Google Scholar 

  16. Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234

    Article  Google Scholar 

  17. Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48(8):1485–1491

    Article  Google Scholar 

  18. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920

    Article  Google Scholar 

  19. Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13(2):97–105

    Article  Google Scholar 

  20. Chatterjee S, Clingenpeel A, McKenna A, Rios O, Johs A (2014) Synthesis and characterization of lignin-based carbon materials with tunable microstructure. Rsc Adv 4(9):4743–4753

    Article  Google Scholar 

  21. Chatterjee S, Jones EB, Clingenpeel AC, McKenna AM, Rios O, McNutt NW, Keffer DJ, Johs A (2014) Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem Eng 2(8):2002–2010

    Article  Google Scholar 

  22. Zhang M, Ogale AA (2014) Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon 69:626–629

    Article  Google Scholar 

  23. Otani S, Fukuoka Y, Igarashi B, Sasaki K (1969) Method for producing carbonized lignin fiber. US patent 3461082

  24. Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13(3):918–926

    Article  Google Scholar 

  25. Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911

    Article  Google Scholar 

  26. Brodin I, Ernstsson M, Gellerstedt G, Sjoholm E (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung 66(2):141–147

    Article  Google Scholar 

  27. Imel AE, Naskar AK, Dadmun MD (2016) Understanding the impact of poly(ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber production. ACS Appl Mater Interfaces 8(5):3200–3207

    Article  Google Scholar 

  28. Dallmeyer I, Lin LT, Li YJ, Ko F, Kadla JF (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299(5):540–551

    Article  Google Scholar 

  29. Svinterikos E, Zuburtikudis I (2016) Carbon nanofibers from renewable bioresources (lignin) and a recycled commodity polymer poly(ethylene terephthalate). J Appl Polym Sci 133(37):1–12. doi:10.1002/APP.43936

    Article  Google Scholar 

  30. Kubo S, Yoshida T, Kadla JF (2007) Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol 27(3–4):257–271

    Article  Google Scholar 

  31. Wang SC, Li Y, Xiang HX, Zhou Z, Chang TK, Zhu MF (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends. Compos Sci Technol 119:20–25

    Article  Google Scholar 

  32. Liu HC, Chien AT, Newcomb BA, Davijani AAB, Kumar S (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389

    Article  Google Scholar 

  33. Husman G (2014) Development and commercialization of a novel low-cost carbon fiber. Presentation at 2014DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, Oak Ridge National Laboratory

  34. Oroumei A, Fox B, Naebe M (2015) Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin. ACS Sustain Chem Eng 3(4):758–769

    Article  Google Scholar 

  35. Liu HC, Chien AT, Newcomb BA, Liu YD, Kumar S (2015) Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3(9):1943–1954

    Article  Google Scholar 

  36. Dong XZ, Lu CX, Zhou PC, Zhang SC, Wang LY, Li DH (2015) Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. Rsc Adv 5(53):42259–42265

    Article  Google Scholar 

  37. Seydibeyoglu MO (2012) A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. J Biomed Biotechnol 2012:1–8. doi:10.1155/2012/598324

    Article  Google Scholar 

  38. Xia KQ, Ouyang Q, Chen YS, Wang XF, Qian X, Wang L (2016) Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 4(1):159–168

    Article  Google Scholar 

  39. Ouyang Q, Wang XH, Wang XL, Huang J, Huang XW, Chen YS (2016) Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization. Polym Degrad Stab 130:320–327

    Article  Google Scholar 

  40. Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162(5–6):453–459

    Article  Google Scholar 

  41. Cifre JGH, La Torre JGD (2004) Orientation of polymer chains in dilute solution under shear: effect of chain model and excluded volume. Macromol Theor Simul 13(3):273–279

    Article  Google Scholar 

  42. Ouyang Q, Chen Y, Wang X, Ma H, Li D, Yang J (2015) Supramolecular structure of highly oriented wet-spun polyacrylonitrile fibers used in the preparation of high-performance carbon fibers. J Polym Res 22(12):1–10

    Article  Google Scholar 

  43. Ren FZ, Lu CX, Liang XY, Wu GP, He F, Ling LC (2004) Influence of amination on the structure of a PAN nascent filament during wet spinning. New Carbon Mater 19(4):268–274

    Google Scholar 

  44. Wang H, Xiao H, Lu Y, Jiang J (2016) The catalytic effect of boron nitride on the mechanical properties of polyacrylonitrile-based carbon fiber. J Mater Sci 51:10690–10700. doi:10.1007/s10853-016-0079-1

    Article  Google Scholar 

  45. Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK, Kamath MG, Lyons KM, Ghoshal S, Pramanik C, Giannuzzi L (2015) High strength and high modulus carbon fibers. Carbon 93:81–87

    Article  Google Scholar 

  46. Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7–8):1119–1124

    Article  Google Scholar 

  47. Iwashita N (2016) Chapter 2—X-ray powder diffraction, materials science and engineering of carbon. Tsinghua University Press, Beijing

    Google Scholar 

  48. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the National Natural Science Foundation of China (No. 21404111) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Q., Xia, K., Liu, D. et al. Fabrication of partially biobased carbon fibers from novel lignosulfonate–acrylonitrile copolymers. J Mater Sci 52, 7439–7451 (2017). https://doi.org/10.1007/s10853-017-0977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0977-x

Keywords

Navigation