Skip to main content
Log in

High-temperature reaction of amorphous silicon with carbon on a multiwall carbon nanotube heater and temperature measurement by thermal radiation spectra

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We used a multiwall carbon nanotube (MWNT) as a minute heater and studied structural changes in amorphous silicon (a-Si) supported on the surface of the MWNT heater during its Joule heating by in situ transmission electron microscopy combined with an optical spectroscopy system. During Joule heating of the MWNT at a temperature higher than 1690 K, thermal radiation spectra which follow Planck’s blackbody radiation law started to be measured, and it was demonstrated that the MWNT heater could reach a maximum temperature of approximately 2135 K. The increase in temperature caused the crystallization of a-Si and subsequent reaction of crystallized Si with carbon in the outer layers of the MWNT to form Si carbide nanoparticles. At elevated temperatures between 2040 and 2135 K, the formed Si carbide nanoparticles thermally decomposed to generate carbon nanocapsules consisting of multilayered graphene shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174

    Article  Google Scholar 

  2. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  3. Miyamoto Y, Berber S, Yoon M, Rubio A, Tománek D (2002) Onset of nanotube decay under extreme thermal and electronic excitations. Phys B 323:78–85

    Article  Google Scholar 

  4. Begtrup GE, Ray KG, Kessler BM, Yuzvinsky TD, Garcia H, Zettl A (2007) Probing nanoscale solids at thermal extremes. Phys Rev Lett 99:155901

    Article  Google Scholar 

  5. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    Article  Google Scholar 

  6. Jang H-S, Jeon SK, Nahm SH (2011) The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49:111–116

    Article  Google Scholar 

  7. Huang JY (2007) In situ observation of quasimelting of diamond and reversible graphite–diamond phase transformations. Nano Lett 7:2335–2340

    Article  Google Scholar 

  8. Chen S, Huang JY, Wang Z, Kempa K, Chen G, Ren ZF (2005) High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes. Appl Phys Lett 87:263107

    Article  Google Scholar 

  9. Asaka K, Karita M, Saito Y (2011) Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating. Appl Phys Lett 99:091907

    Article  Google Scholar 

  10. Xiong F, Liao A, Pop E (2009) Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl Phys Lett 95:243103

    Article  Google Scholar 

  11. Zhang R, Hummelgård M, Olin H (2010) Carbon nanocages grown by gold templating. Carbon 48:424–430

    Article  Google Scholar 

  12. Wei X, Wang M-S, Bando Y, Golberg D (2011) Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Sci Technol Adv Mater 12:044605

    Article  Google Scholar 

  13. Li P, Jiang K, Liu M, Li Q, Fan S (2003) Polarized incandescent light emission from carbon nanotubes. Appl Phys Lett 82:1763–1765

    Article  Google Scholar 

  14. Cai X, Akita S, Nakayama Y (2004) Current induced light emission from a multiwall carbon nanotube. Thin Solid Films 464–465:364–367

    Article  Google Scholar 

  15. Aliev AE, Kuznetsov AA (2008) The origin of polarized blackbody radiation from resistively heated multiwalled carbon nanotubes. Phys Lett A 372:4938–4942

    Article  Google Scholar 

  16. Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285:1719–1722

    Article  Google Scholar 

  17. Asaka K, Nakahara H, Saito Y (2008) Nanowelding of a multiwalled carbon nanotube to metal surface and its electron field emission properties. Appl Phys Lett 92:023114

    Article  Google Scholar 

  18. Asaka K, Terada T, Saito Y (2014) Transformation of silicon nanoparticles on a carbon nanotube heater into hollow graphitic nanocapsules via silicon carbide. Diam Relat Mater 50:49–54

    Article  Google Scholar 

  19. Greene JE, Mei L (1976) High temperature metal-induced crystallization of r.f. sputtered amorphous Si thin films. Thin Solid Films 37:429–440

    Article  Google Scholar 

  20. Gonzalez-Hernandez J, Martin D, Chao SS, Tsu R (1984) Crystallization temperature of ultrahigh vacuum deposited silicon films. Appl Phys Lett 45:101–103

    Article  Google Scholar 

  21. Hirasawa M, Orii T, Seto T (2006) Size-dependent crystallization of Si nanoparticles. Appl Phys Lett 88:093119

    Article  Google Scholar 

  22. Kamino T, Tagushi T, Saka H (1994) In situ study of chemical reaction between silicon and graphite at 1,400°C in a high resolution/analytical electron microscope. J Electron Microsc 43:104–110

    Google Scholar 

  23. Man D, Kato YK, Kinkhabwala A, Cao E, Wang X, Zhang L, Wang Q, Guo J, Dai H (2007) Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat Nanotechnol 2:33–38

    Article  Google Scholar 

  24. Liu Z, Bushmarker A, Aykol M, Cronin SB (2011) Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 5:4634–4640

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by JSPS KAKENHI Grant Number 25390015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Asaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaka, K., Terada, T. & Saito, Y. High-temperature reaction of amorphous silicon with carbon on a multiwall carbon nanotube heater and temperature measurement by thermal radiation spectra. J Mater Sci 52, 7232–7238 (2017). https://doi.org/10.1007/s10853-017-0960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0960-6

Keywords

Navigation